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CONNECTIVITY PROBLEMS ON GRAPHS

GRAPH CONNECTIVITY

G = ⟨V (G ),E (G )⟩ is undirected graph.
– G is connected if ∀i , j ∈ V (G ) there is a chain in G that connect i and j .
– connected component is a connected subgraph that is not part of any
larger connected subgraph.

APPLICATIONS:

Infrastructure reliability:

road network,
routing in networks (Internet),
development of large integrated circuits etc.

applications for which we need to obtain solutions of large connectivity
problems on graphs.

The large graphs are sparse: |E (G )| = O(|V (G )|).
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BREADTH FIRST-SEARCH (BFS)

BREADTH-FIRST SEARCH

— the natural approach to test connectivity of a graph:
construct a rooted reachability tree for some vertex from V (G )

If diameter of G is ℓ then it takes ℓ iterations to construct the tree.

The computational complexity: O(n+m).

K. Zuse. Der Plankalkul, pp. 96–105 (2.47–2.56). Konrad Zuse
Internet Archive, 1972.
URL: http: //zuse.zib.de/item/gHI1cNsUuQweHB6.

E.F. Moore. The shortest path through a maze // Proceedings
of the International Symposium on the Theory of Switching.
Harvard University Press, 1959, pp. 285–292.

C.Y. Lee. An Algorithm for Path Connections and Its Applications //
IRE Transactions on Electronic Computers. 1961.
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ALGEBRAIC BFS

— a graph traversal implemented as computaions of the form:

x (0) = ei , x (k+1) = Ax (k), A is an adjacency matrix

— GraphBLAS et al. — fast realizations of algebraic BFS
for sparse graphs.

The computational complexity: O(n)− O(mn).

H.M. Bucker, C. Sohr. Reformulating a breadth-fist search algorithm

on an undirected graph in the language of linear algebra // Intern.
Conf. on Math. and Compu. in Sci. and in Industry, 2014, pp. 33–35.

M. Besta, F. Marending, E. Solomonik, T. Hoefler. SlimSell:

a vectorizable graph representation for breadth-first seach // 2017
IEEE Intern. Paral. and Distr. Proc. Symp., 2017, pp. 32–41.

P. Burkhardt. Optimal algebraic Breadth-First Search for sparse

graphs // arXiv:1906.03113v4 [cs.DS]. 30 Apr 2021.
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PERTURBATION OF AN ADJACENCY MATRIX

A = A(G ) is invertible modified adjacency matrix of G .

A′ = A+ 𝜀Ei ,

(Ei )ii = 1, (Ei )jk = 0, j ̸= i , k ̸= i : a′ii = aii + 𝜀, 𝜀>0

⇒ G → G + 𝜀(i , i)

perform perturbation of a diagonal element of A;
find connected component of a graph,
considering changing of A−1 entries.

PERTURBATION PROPAGATE WITHIN

CONNECTED COMPONENT:

(A−1)ij = (−1)i+j ·
detAij

detA
= (−1)i+j ·

detA1,ij detA2

detA1 detA2
= (−1)i+j ·

detA1,ij

detA1
,

where A1, A2 are matrices of connected components.
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MODIFICATION OF ADJACENCY MATRIX

Non-oriented graph: (i , j)∈E (G )⇔ (j , i)∈E (G )

Modification of adjacency matrix

A0(G ) is adjacency matrix of G .

A(G ) = A0(G ) + dℐ,

where ℐ is identity matrix,

d > max
i∈V (G)

di ,

di is degree of vertex i ∈V (G ).

A(G ) is a positive definite matrix
with strong diagonal predominance.
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GRAPH ISOMORPHISM PROBLEM

G = ⟨V (G ),E (G )⟩, H = ⟨V (H),E (H)⟩ are simple graphs.

A(G ), B(G ) are matrices of the graphs.

Isomorphism:

G ≃ H ⇔
⇔ ∃𝜙 : V (G )→ V (H) :

(︂
(i , j) ∈ E (G )⇔ (𝜙(i), 𝜙(j)) ∈ E (H)

)︂

Theorem

G ≃ H ⇔ the consisted perturbations may be implemented:

detA(i) = detB(ji ), i = 1, n,

A(0) = A, B(0) = B , A(i) = A(i−1) + 𝜀iEi , B
(i) = B(i−1) + 𝜀jiEji .
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MODIFIED CHRACTERISTIC POLYNOMIAL

Characteristic polynomial:

𝜒G(x) = det(A(G )− xℐ).
Modified characteristic polynomial:

𝜂G(x1, . . . , xn) = det(A(G ) + X ), X = diag(x1, . . . , xn).

Theorem

G≃H and 𝜙 :V (G )→V (H) ⇔ 𝜂G(x1, . . . , xn) ≡ 𝜂H(x𝜙(1), . . . , x𝜙(n)).

Comparison of A−1 elements equivalent to the comparison of the modified
characteristic polynomials values at points 𝜀(i)∈Rn:

𝜀(1)=(𝜀1, 0, 0, . . . , 0), 𝜀
(2)=(𝜀1, 𝜀2, 0, . . . , 0), 𝜀

(3)=(𝜀1, 𝜀2, 𝜀3, . . . , 0), . . .:

𝜂G(𝜀
(i)) = 𝜂H(𝜀

(i−1)
𝜙 + 𝜀iej), i = 1, n.
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MODIFIED CHRACTERISTIC POLYNOMIAL

The modified characteristic polynomials for graphs on n = 1, 2, 3 vertices:

n = 1:

𝜂1 = x1;

n = 2:

𝜂1 = x1x2,
𝜂2 = x1x2 − 1;

n = 3:

𝜂1 = x1x2x3,
𝜂2 = x1x2x3 − x1,
𝜂3 = x1x2x3 − x1 − x3,
𝜂4 = x1x2x3 − x1 − x2 − x3 + 2.
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THE APPROACH TO THE GRAPH ISOMORPHISM PR.

R.T. Faizullin, A.V. Prolubnikov An algorithm of the spectral splitting for
the double permutation cipher // Pattern Recognition and Image Analysis.
2002. Vol. 12, No. 4. P. 365–375.

A.V. Prolubnikov. Reduction of the graph isomorphism problem to equality
checking of n-variables polynomials //Trudy Instituta Matematiki i
Mekhaniki UrO. RAN Proceedings of Krasovskii Institute of Mathematics
and Mechanics UB RAS. 2016. Т. 22, №1. С. 235–240. (in Russian)

A.V. Prolubnikov. Precision and complexity of computations that is needed
to solve the graph isomorphism problem using its reduction to equality
checking of n-varaibles polynomials // Computational Technologies. 2016.
Т. 21, № 6. С. 71–88. (in Russian)

A.V. Prolubnikov. Reduction of the graph isomorphism problem to equality
checking of n-variables polynomials and the algorithms that use the
reduction // arXiv.org, 2016.

http://arxiv.org/pdf/1512.03139.pdf
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RESPONSE TO A PERTURBATION

Implementing perturbations of graph matrix A
we analyze the response on it in A−1 entries

Finding rows (columns) of A−1:

Solve SLAE Ax = ei . x is the i-th column of A−1

How to check that the vertices belong to the same
connected component:

1). Solve SLAE
Ax = ei . (1)

2). Implement the perturbation: A′ = A+ 𝜀Ei .
3). Solve SLAE

A′x ′ = ei . (2)

4). Comparison: xj
?

̸= x ′j — yes ⇒ i and j belong to the same connected
component, no ⇒ they are not.
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THE COMPONENTS OF THE SLAE’S SOLUTION

xj = xj(0) =
Aij

detA(0)
= (−1)i+j ·

𝜂Gij
(0, . . . , 0)

𝜂G(0, . . . , 0)
,

x ′j = xj(𝜀) =
Aij

detA(𝜀)
= (−1)i+j ·

𝜂Gij
(0, . . . , 0)

𝜂G(𝜀ei )
.

We have: 𝜂G(0, . . . , 0) ̸= 𝜂G(𝜀ei ), 𝜀 > 0.

Checking the inequality xj ̸=x ′j :

xj ̸= x ′j ⇔ xj(0) ̸= xj(𝜀)⇔ 𝜂Gij
(0, . . . , 0) ̸= 0

𝜂Gij
(0, . . . , 0) ̸= 0 ⇔ i , j belong to the same connected component
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ALGORITHM 1

Algorithm 1 (G )

1 V ← V (G );
2 K ← 1;
3 VK ← ∅;
4 while V ̸= ∅:
5 choose i ∈V ;
6 VK ← VK ∪ {i}; V ← V ∖ {i};
7 solve SLAE (1), the solution is x ;
8 solve SLAE (2), the solution is x ′;
9 for ∀j ∈ V :
10 if x ′j ̸= xj
11 VK ← VK ∪ {j}; V ← V ∖ {j};
12 K ← K + 1;

Output: Vk , k = 1,K , are connected components of G .
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JUSTIFICATION OF THE ALGORITHM 1

Proposition 1.

detAij =0 iff i , j ∈ V (G ) belong to different connected components of G .

If i , j ∈ V (G ) belong to the same connected component then⃒⃒
xj − x ′j

⃒⃒
=

𝜀 | detAij | detAii

detA(detA+ 𝜀 detAii )
≥ Δ > 0.

Proposition 2.

If i , j ∈ V (G ) belong to the same connected component then

Δ >
𝜀

dn+1
=

10

dn
,

if 𝜀 = 10d .

The worst case: G is a simple chain, ℓ(i , j)=n.
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ACCURACY AND COMPLEXITY OF COMPUTATIONS

For iterative methods (simple iteration, Gauss-Seidel):⃒⃒
x
(k+1)
j − x

(k)
j

⃒⃒
≤

⃦⃦
x (k+1) − x (k)

⃦⃦
<

Δ0

𝜇k
,

where Δ0 is accuracy of the initial approximation, 𝜇: d = 𝜇dmax.

It takes N iterations of the methods to fix the inequality of exact values
xj ̸=x ′j :

𝛿0
𝜇N

<
Δ

4
.

⇒ N > log𝜇

(︂
4𝛿0
Δ

)︂
= (n + 1) log𝜇 d + log𝜇(8𝛿0) ≈ (n + 1) log𝜇 d ,

where log𝜇 d = log𝜇(𝜇dmax) = 1+ log𝜇 dmax = 2 при 𝜇=dmax.

N = O(n). Complexity of an iteration — O(m).
⇒ overall complexity of the Algorithm 1 — O(nm).
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THE COMPUTATIONAL COMPLEXITY OF VBFS

BFS implemented as a graph traversal:

the compuatational complexity — O(m + n):

since during the traversal

we bypass no more than m edges,

we bypass n vertices.

We may handle only one level of reachability tree to avoid cycles.

⇒ there is no BFS implementation with the computational

complexity is less than O(m+n).

Inspite the computional complexity of implementations of algebraic BFS

is O(mn), it may be faster then traversal-implemented BFS with

complexity O(m+n) due to parallelization of computations at one level

of reachability tree.
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USING IMPLEMENTATIONS

OF NUMERICAL METHODS FOR SLAE

TO SOLVE CONNECTIVITY PROBLEMS:

parallelization of BFS is difficult.

While

there are effective parallel implementations of numerical
methods for SLAE,

including methods for sparse SLAE.
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ITERATIVE NUMERICAL METHODS

AND GRAPH TRAVERSALS
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x (0) = ei = (0, . . . , 1, . . . , 0).

1. Simple iteration method:

BFS: x (k+1) = Ax (k) → x (k+1) = b − D−1Ax (k).

x
(k+1)
j =

1

ajj

(︂
bj −

∑︁
l ̸=j

ajlx
(k)
j

)︂
, bj ∈ {0, 1}.

2. Gauss-Seidel Method:

(L+ D)x (k+1) = −Ux (k) + b.

x
(k+1)
j =

1

ajj

(︂
bj −

j−1∑︁
l=1

ajlx
(k+1)
l −

n∑︁
l=j+1

ajlx
(k)
l

)︂
, bj ∈ {0, 1}.
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CONVERGENCE TO THE EXACT SOLUTION

USING ITERATIVE METHODS FOR SLAE:

If we search for the exact solution, then it is not essential
which method we use to solve SLAE in Algorithm 1.

But if the number of iterations is relatively small

then the iterations may considered as graph traversals.

The traversal that defines by Gauss-Seidel method

is differnet than the one of BFS.

Traversal: traverse from visted vertex to not visted yet vertex j is equiavalent
to:

x
(k)
j =0, but x

(k+1)
j ̸=0.

A.V. Prolubnikov (Omsk StateUniversity) An approach to onnectivity problems 16.03.23 20 / 46



ALGORITHM 2 (GSS)

Algorithm 2 (G ; i ∈V (G )) : C ;

1 x (0) = ei ; C ← {i};
2 x (1) = 0 ∈ Rn;
3 k ← 1;

4 while ∃j ∈V (G ) :
(︀
x
(k)
j = 0 и x

(k+1)
j ̸= 0

)︀
5 for ∀j ∈V (G ):

6 x
(k+1)
j = ajj ·

(︂
bj −

j−1∑︀
l=1

ajlx
(k+1)
l −

n∑︀
l=j+1

ajlx
(k)
l

)︂
, bj ∈ {0, 1}.

7 k ← k + 1;

8 C ← C ∪ {j : x (k)j ̸= 0}.

Output: C is the set of vertices of the connected component, i ∈C .
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ITERATION OF BFS (SIS) FOR THE GRAPH:

The graph G :

i = 1
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ITERATION OF BFS (SIS) FOR THE GRAPH:

x
(k+1)
1 = . . .− x

(k)
2 ;

x
(k+1)
2 = . . .− x

(k)
1 − x

(k)
3 − x

(k)
6 ;

x
(k+1)
3 = . . .− x

(k)
2 − x

(k)
4 − x

(k)
7 ;

x
(k+1)
4 = . . .− x

(k)
3 ;

x
(k+1)
5 = . . .− x

(k)
6 ;

x
(k+1)
6 = . . .− x

(k)
2 − x

(k)
5 − x

(k)
7 ;

x
(k+1)
7 = . . .− x

(k)
3 − x

(k)
6 − x

(k)
8 ;

x
(k+1)
8 = . . .− x

(k)
7 .
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BFS. ITERATION 1.

x (0) = ei , x
(k+1) = Ax (k).

x
(k−1)
j ̸= 0 ⇔ vertex j is reached before the k-th iteration.
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BFS. ITERATION 2.
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BFS. ITERATION 3.
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BFS. ITERATION 4.
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AN ITERATION OF BFS FOR THE GRAPH:

x
(k+1)
1 = . . .− x

(k)
2 ;

x
(k+1)
2 = . . .− x

(k)
1 − x

(k)
3 − x

(k)
6 ;

x
(k+1)
3 = . . .− x

(k)
2 − x

(k)
4 − x

(k)
7 ;

x
(k+1)
4 = . . .− x

(k)
3 ;

x
(k+1)
5 = . . .− x

(k)
6 ;

x
(k+1)
6 = . . .− x

(k)
2 − x

(k)
5 − x

(k)
7 ;

x
(k+1)
7 = . . .− x

(k)
3 − x

(k)
6 − x

(k)
8 ;

x
(k+1)
8 = . . .− x

(k)
7 .
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AN ITERATION OF GSS FOR THE GRAPH:

x
(k+1)
1 = . . .− x

(k)
2 ;

x
(k+1)
2 = . . .− x

(k+1)
1 − x

(k)
3 − x

(k)
6 ;

x
(k+1)
3 = . . .− x

(k+1)
2 − x

(k)
4 − x

(k)
7 ;

x
(k+1)
4 = . . .− x

(k+1)
3 ;

x
(k+1)
5 = . . .− x

(k)
6 ;

x
(k+1)
6 = . . .− x

(k+1)
2 − x

(k+1)
5 − x

(k)
7 ;

x
(k+1)
7 = . . .− x

(k+1)
3 − x

(k+1)
6 − x

(k)
8 ;

x
(k+1)
8 = . . .− x

(k+1)
7 .
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THE FIRST ITERATION OF GSS

The perturbation of diagonal element a11 spreads through traverses
over all ordered chains that originated in the vertices reached at the first
iteration:
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THE SECOND ITERATION OF GSS

If the perturbation is delivered to a vertex,
then it starts another BFS traversal from the vertex at the next iteration.
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BFS. ITERATION 1.
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BFS. ITERATION 2.
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BFS. ITERATION 3.
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BFS. ITERATION 4.
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AN ITERATION GSS FOR THE GRAPH:

x
(k+1)
1 = . . .− x

(k)
2 ;

x
(k+1)
2 = . . .− x

(k+1)
1 − x

(k)
3 ;

x
(k+1)
3 = . . .− x

(k+1)
2 − x

(k)
4 ;

x
(k+1)
4 = . . .− x

(k+1)
3 − x

(k)
5 ;

x
(k+1)
5 = . . .− x

(k+1)
4 .
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GSS. ITERATION 1.
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AN ITERATION GSS FOR THE GRAPH:

x
(k+1)
1 = . . .− x

(k)
5 ;

x
(k+1)
2 = . . .− x

(k)
3 ;

x
(k+1)
3 = . . .− x

(k+1)
2 − x

(k)
4 ;

x
(k+1)
4 = . . .− x

(k+1)
3 − x

(k)
5 ;

x
(k+1)
5 = . . .− x

(k+1)
1 − x

(k+1)
4 .
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GSS. ITERATION 1.
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GSS. ITERATION 2.
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GSS. ITERATION 3.
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GSS. ITERATION 4.

A.V. Prolubnikov (Omsk StateUniversity) An approach to onnectivity problems 16.03.23 42 / 46



SERIAL IMPLEMENTATIONS OF ALGORITHMS

SPARSE GRAPHS

n = 90 000, m = 89 100, K = 900.

Connected components are chains on 100 vertices.

Solving SLAE (Algorithm 1) — simple iteration method:

N = 110, d = 100
— 20 minutes

Solving SLAE (Algorithm 1) — Gauss-Seidel method:

N = 80, d = 1000
— 9 minutes

GSS (Algorithm 2):
d = 1

— 3 minutes
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SERIAL IMPLEMENTATIONS OF ALGORITHMS

SPARSE GRAPHS

Graph of a problem of connectivity of the transport network:

— the graph edges corresponds to entry of a variables
into equations and inequalities:

Solving SLAE — simple iteration method:

n = 367 840, m = 53 404 685, m = 150n, K = 224.

32 connected components with 11 429 vertices,
192 connected components with 11 vertices (chains) — 97 minutes

BFS (not algebraic) ≈48 hours

— SERIAL IMPLEMENTATIONA.V. Prolubnikov (Omsk StateUniversity) An approach to onnectivity problems 16.03.23 44 / 46



THE COMPUTATIONAL COMPLEXITY OF ALG. 2 (GSS)

The complexity of one iteration is O(m).

ℓ is diameter. The number of iterations in the worst case is ℓ.

⇒ overall complexity is O(ℓm).

The number of iterations is determined by the numbering of vertices.

Proposition 3.

For every instance of the problem, the computaionial complexity of GSS
(Algorithm 2) is not greater than the one of algebraic BFS.

The computational complexity of GSS is less than the one of BFS if we

reach the vertices that belong to chain with maximum length

and from which the chains with the correct order are originated.

A.V. Prolubnikov (Omsk StateUniversity) An approach to onnectivity problems 16.03.23 45 / 46



CONCLUSIONS

We present an approach to solution of connectivity problems on
graphs using perturbations of elements of the adjacency matrix.

The approach allows to use effective numerical realizations of methods
for SLAE to solve connectivity problems on graphs.

We consider iterative methods of SLAE as realizations of graph
traversals and present the algorithm of finding connected components
of a graph which uses graph traverse that is not equivalent to the one
of BFS.

Its computational complexity is not greater then complexity of BFS
for all instances of the problem.
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