
Sublinear time algorithms in (semi)groups

Vladimir Shpilrain
The City College of New York

Omsk Algebraic Webinar
February 18, 2021

Appetizer

Divisibility of a decimal integer by 2, 5, or 10.

Read just the last digit, not the whole input.

This is a rare instance where both “yes” and “no” answers can be given
in sublinear (in fact, in constant) time.

2 / 51

Appetizer

Divisibility of a decimal integer by 2, 5, or 10.

Read just the last digit, not the whole input.

This is a rare instance where both “yes” and “no” answers can be given
in sublinear (in fact, in constant) time.

3 / 51

Appetizer

Divisibility of a decimal integer by 2, 5, or 10.

Read just the last digit, not the whole input.

This is a rare instance where both “yes” and “no” answers can be given
in sublinear (in fact, in constant) time.

4 / 51

Las Vegas algorithms

A Las Vegas algorithm is a randomized algorithm that never gives an
incorrect results; that is, it either produces the correct result or it informs
about the failure.

In contrast, a Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with some (typically small) probability.

Las Vegas algorithms are more useful in the sense that they can improve
time complexity of “honest”, “hard-working”, algorithms that always give
a correct answer but are slow. Specifically, by running a fast Las Vegas
algorithm and a slow “honest” algorithm in parallel, one often gets an
algorithm that always terminates with a correct answer and whose
average-case complexity is somewhere in between.

In the context of group-theoretic problems, this was well illustrated in [I.
Kapovich, A. G. Myasnikov, P. Schupp, V. Shpilrain, Generic-case
complexity, decision problems in group theory and random walks, J.
Algebra 264 (2003), 665–694] and [I. Kapovich, A. G. Myasnikov, P.
Schupp, V. Shpilrain, Average-case complexity and decision problems in
group theory, Adv. Math. 190 (2005), 343–359].

5 / 51

Las Vegas algorithms

A Las Vegas algorithm is a randomized algorithm that never gives an
incorrect results; that is, it either produces the correct result or it informs
about the failure.

In contrast, a Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with some (typically small) probability.

Las Vegas algorithms are more useful in the sense that they can improve
time complexity of “honest”, “hard-working”, algorithms that always give
a correct answer but are slow. Specifically, by running a fast Las Vegas
algorithm and a slow “honest” algorithm in parallel, one often gets an
algorithm that always terminates with a correct answer and whose
average-case complexity is somewhere in between.

In the context of group-theoretic problems, this was well illustrated in [I.
Kapovich, A. G. Myasnikov, P. Schupp, V. Shpilrain, Generic-case
complexity, decision problems in group theory and random walks, J.
Algebra 264 (2003), 665–694] and [I. Kapovich, A. G. Myasnikov, P.
Schupp, V. Shpilrain, Average-case complexity and decision problems in
group theory, Adv. Math. 190 (2005), 343–359].

6 / 51

Las Vegas algorithms

A Las Vegas algorithm is a randomized algorithm that never gives an
incorrect results; that is, it either produces the correct result or it informs
about the failure.

In contrast, a Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with some (typically small) probability.

Las Vegas algorithms are more useful in the sense that they can improve
time complexity of “honest”, “hard-working”, algorithms that always give
a correct answer but are slow. Specifically, by running a fast Las Vegas
algorithm and a slow “honest” algorithm in parallel, one often gets an
algorithm that always terminates with a correct answer and whose
average-case complexity is somewhere in between.

In the context of group-theoretic problems, this was well illustrated in [I.
Kapovich, A. G. Myasnikov, P. Schupp, V. Shpilrain, Generic-case
complexity, decision problems in group theory and random walks, J.
Algebra 264 (2003), 665–694] and [I. Kapovich, A. G. Myasnikov, P.
Schupp, V. Shpilrain, Average-case complexity and decision problems in
group theory, Adv. Math. 190 (2005), 343–359].

7 / 51

From graph theory: property testing

O. Goldreich, S. Goldwasser, D. Ron, Property Testing and its
Connection to Learning and Approximation, JACM 45 (1998), 653–750.

In particular, they considered the property of k-colorability of graphs.
This property is NP-complete to determine precisely but it is efficiently
“testable”. For example, if a graph G has a subgraph isomorphic to a
complete graph Kn with n > k, then G is not k-colorable.

8 / 51

From graph theory: property testing

O. Goldreich, S. Goldwasser, D. Ron, Property Testing and its
Connection to Learning and Approximation, JACM 45 (1998), 653–750.

In particular, they considered the property of k-colorability of graphs.
This property is NP-complete to determine precisely but it is efficiently
“testable”. For example, if a graph G has a subgraph isomorphic to a
complete graph Kn with n > k , then G is not k-colorable.

9 / 51

A theorem of Sanov

Denote A(k) =

(
1 k
0 1

)
, B(k) =

(
1 0
k 1

)
.

Theorem

The subgroup of SL2(Z) generated by A(2) and B(2) consists of all

matrices of the form

(
1 + 4n1 2n2

2n3 1 + 4n4

)
with determinant 1, where

all ni are arbitrary integers.

Corollary

The membership problem in the subgroup of SL2(Z) generated by A(2)
and B(2) is solvable in constant time.

10 / 51

A theorem of Sanov

Denote A(k) =

(
1 k
0 1

)
, B(k) =

(
1 0
k 1

)
.

Theorem

The subgroup of SL2(Z) generated by A(2) and B(2) consists of all

matrices of the form

(
1 + 4n1 2n2

2n3 1 + 4n4

)
with determinant 1, where

all ni are arbitrary integers.

Corollary

The membership problem in the subgroup of SL2(Z) generated by A(2)
and B(2) is solvable in constant time.

11 / 51

A theorem of Sanov

Denote A(k) =

(
1 k
0 1

)
, B(k) =

(
1 0
k 1

)
.

Theorem

The subgroup of SL2(Z) generated by A(2) and B(2) consists of all

matrices of the form

(
1 + 4n1 2n2

2n3 1 + 4n4

)
with determinant 1, where

all ni are arbitrary integers.

Corollary

The membership problem in the subgroup of SL2(Z) generated by A(2)
and B(2) is solvable in constant time.

12 / 51

Does Sanov’s description generalize to k > 2?

No.

[A. Chorna, K. Geller, V. Shpilrain, On two-generator subgroups of
SL2(Z), SL2(Q), and SL2(R), J. Algebra 478 (2017), 367–381]:

Theorem

The subgroup of SL2(Z) generated by A(k) and B(k), k ∈ Z, k ≥ 3, has
infinite index in the group of all matrices of the form(

1 + k2m1 km2

km3 1 + k2m4

)
with determinant 1.

Thus, we cannot give both “yes” and “no” answers in sublinear time, but
we can give the “no” answer in sublinear time if we have a sublinear time
algorithm for divisibility of an integer by k .

13 / 51

Does Sanov’s description generalize to k > 2?

No.

[A. Chorna, K. Geller, V. Shpilrain, On two-generator subgroups of
SL2(Z), SL2(Q), and SL2(R), J. Algebra 478 (2017), 367–381]:

Theorem

The subgroup of SL2(Z) generated by A(k) and B(k), k ∈ Z, k ≥ 3, has
infinite index in the group of all matrices of the form(

1 + k2m1 km2

km3 1 + k2m4

)
with determinant 1.

Thus, we cannot give both “yes” and “no” answers in sublinear time, but
we can give the “no” answer in sublinear time if we have a sublinear time
algorithm for divisibility of an integer by k .

14 / 51

Does Sanov’s description generalize to k > 2?

No.

[A. Chorna, K. Geller, V. Shpilrain, On two-generator subgroups of
SL2(Z), SL2(Q), and SL2(R), J. Algebra 478 (2017), 367–381]:

Theorem

The subgroup of SL2(Z) generated by A(k) and B(k), k ∈ Z, k ≥ 3, has
infinite index in the group of all matrices of the form(

1 + k2m1 km2

km3 1 + k2m4

)
with determinant 1.

Thus, we cannot give both “yes” and “no” answers in sublinear time, but
we can give the “no” answer in sublinear time if we have a sublinear time
algorithm for divisibility of an integer by k .

15 / 51

Warning

[H.-A. Esbelin and M. Gutan, On the membership problem for some
subgroups of SL2(Z), Annales mathématiques du Québec 43 (2019),
233—247].

Theorem

Let k ∈ Z, k ≥ 2. A matrix of the form

(
1 + k2m1 km2

km3 1 + k2m4

)
from

SL2(Z) belongs to the subgroup generated by A(k) and B(k) if and only
if at least one of the rationals p = km2

1+k2m1
and q = km3

1+k2m4
has a

continued fraction representation with all partial quotients divisible by k.

Theorem

Let a ∈ Z, b ∈ Z, b 6= 0, and let g .c .d .(a, b) = 1. Then the time
complexity of finding a continued fraction representation of a

b is
O(log(max(|a|, |b|))).

16 / 51

Warning

[H.-A. Esbelin and M. Gutan, On the membership problem for some
subgroups of SL2(Z), Annales mathématiques du Québec 43 (2019),
233—247].

Theorem

Let k ∈ Z, k ≥ 2. A matrix of the form

(
1 + k2m1 km2

km3 1 + k2m4

)
from

SL2(Z) belongs to the subgroup generated by A(k) and B(k) if and only
if at least one of the rationals p = km2

1+k2m1
and q = km3

1+k2m4
has a

continued fraction representation with all partial quotients divisible by k.

Theorem

Let a ∈ Z, b ∈ Z, b 6= 0, and let g .c .d .(a, b) = 1. Then the time
complexity of finding a continued fraction representation of a

b is
O(log(max(|a|, |b|))).

17 / 51

Primitive elements of a free group

Let Fr be a free group with a free generating set x1, . . . , xr and let
w = w(x1, . . . , xr). Call an element u ∈ Fr primitive if u can be taken to
x1 by an automorphism of Fr .

The Whitehead graph Wh(w) of w has 2r vertices that correspond to
x1, . . . , xr , x

−1
1 , . . . , x−1

r . For each occurrence of a subword xixj in the
word w ∈ Fr , there is an edge in Wh(w) that connects the vertex xi to
the vertex x−1

j ; if w has a subword xix
−1
j , then there is an edge

connecting xi to xj , etc. There is one more edge (the external edge):
this is the edge that connects the vertex corresponding to the last letter
of w to the vertex corresponding to the inverse of the first letter.

It was observed by Whitehead that the Whitehead graph of any cyclically
reduced primitive element w of length > 2 has either an isolated edge or
a cut vertex, i.e., a vertex that, having been removed from the graph
together with all incident edges, increases the number of connected
components of the graph.

18 / 51

Primitive elements of a free group

Let Fr be a free group with a free generating set x1, . . . , xr and let
w = w(x1, . . . , xr). Call an element u ∈ Fr primitive if u can be taken to
x1 by an automorphism of Fr .

The Whitehead graph Wh(w) of w has 2r vertices that correspond to
x1, . . . , xr , x

−1
1 , . . . , x−1

r . For each occurrence of a subword xixj in the
word w ∈ Fr , there is an edge in Wh(w) that connects the vertex xi to
the vertex x−1

j ; if w has a subword xix
−1
j , then there is an edge

connecting xi to xj , etc. There is one more edge (the external edge):
this is the edge that connects the vertex corresponding to the last letter
of w to the vertex corresponding to the inverse of the first letter.

It was observed by Whitehead that the Whitehead graph of any cyclically
reduced primitive element w of length > 2 has either an isolated edge or
a cut vertex, i.e., a vertex that, having been removed from the graph
together with all incident edges, increases the number of connected
components of the graph.

19 / 51

Primitivity-blocking words

Call a group word w = w(x1, . . . , xr) primitivity-blocking if it cannot be a
subword of any cyclically reduced primitive element of Fr . For example, if
the Whitehead graph of w has a Hamilton circuit, then w is
primitivity-blocking because in this case, if w is a subword of u, then the
Whitehead graph of u, too, has a Hamilton circuit and therefore does not
have a cut vertex.

A fast testing algorithm T to test primitivity of an input (cyclically
reduced) word u would build the Whitehead graph of u, one edge at a
time, going left to right, and checking if the resulting graph is
Hamiltonian. (Note that the Whitehead graph always has 2r vertices.)
The “usual” Whitehead algorithm can run in parallel.

Theorem

The average-case complexity of this composite algorithm is sublinear with
respect to |u|.

20 / 51

Primitivity-blocking words

Call a group word w = w(x1, . . . , xr) primitivity-blocking if it cannot be a
subword of any cyclically reduced primitive element of Fr . For example, if
the Whitehead graph of w has a Hamilton circuit, then w is
primitivity-blocking because in this case, if w is a subword of u, then the
Whitehead graph of u, too, has a Hamilton circuit and therefore does not
have a cut vertex.

A fast testing algorithm T to test primitivity of an input (cyclically
reduced) word u would build the Whitehead graph of u, one edge at a
time, going left to right, and checking if the resulting graph is
Hamiltonian. (Note that the Whitehead graph always has 2r vertices.)
The “usual” Whitehead algorithm can run in parallel.

Theorem

The average-case complexity of this composite algorithm is sublinear with
respect to |u|.

21 / 51

Primitivity-blocking words

Call a group word w = w(x1, . . . , xr) primitivity-blocking if it cannot be a
subword of any cyclically reduced primitive element of Fr . For example, if
the Whitehead graph of w has a Hamilton circuit, then w is
primitivity-blocking because in this case, if w is a subword of u, then the
Whitehead graph of u, too, has a Hamilton circuit and therefore does not
have a cut vertex.

A fast testing algorithm T to test primitivity of an input (cyclically
reduced) word u would build the Whitehead graph of u, one edge at a
time, going left to right, and checking if the resulting graph is
Hamiltonian. (Note that the Whitehead graph always has 2r vertices.)
The “usual” Whitehead algorithm can run in parallel.

Theorem

The average-case complexity of this composite algorithm is sublinear with
respect to |u|.

22 / 51

Other blocking words

Let u ∈ Fr . Consider the orbit Orb(u) = {ϕ(u), ϕ ∈ Aut(Fr)}. Call
w ∈ Fr an Orb(u)-blocking word if it cannot be a subword of any
cyclically reduced v ∈ Orb(u).

Problem. Is there an algorithm that, on input u ∈ Fr , would output at
least one particular Orb(u)-blocking word?

A good start would be finding an Orb(u)-blocking word for u = [x1, x2].
It is easy to do if r = 2 since, by a classical result of Nielsen, any
cyclically reduced v ∈ Orb([x1, x2]) in this case is either [x1, x2] or [x2, x1].

23 / 51

Other blocking words

Let u ∈ Fr . Consider the orbit Orb(u) = {ϕ(u), ϕ ∈ Aut(Fr)}. Call
w ∈ Fr an Orb(u)-blocking word if it cannot be a subword of any
cyclically reduced v ∈ Orb(u).

Problem. Is there an algorithm that, on input u ∈ Fr , would output at
least one particular Orb(u)-blocking word?

A good start would be finding an Orb(u)-blocking word for u = [x1, x2].
It is easy to do if r = 2 since, by a classical result of Nielsen, any
cyclically reduced v ∈ Orb([x1, x2]) in this case is either [x1, x2] or [x2, x1].

24 / 51

Other blocking words

Let u ∈ Fr . Consider the orbit Orb(u) = {ϕ(u), ϕ ∈ Aut(Fr)}. Call
w ∈ Fr an Orb(u)-blocking word if it cannot be a subword of any
cyclically reduced v ∈ Orb(u).

Problem. Is there an algorithm that, on input u ∈ Fr , would output at
least one particular Orb(u)-blocking word?

A good start would be finding an Orb(u)-blocking word for u = [x1, x2].
It is easy to do if r = 2 since, by a classical result of Nielsen, any
cyclically reduced v ∈ Orb([x1, x2]) in this case is either [x1, x2] or [x2, x1].

25 / 51

The word problem for semigroups

Given two words g , h in generators of a semigroup G , find out whether or
not g = h in G .

Problem

Are there natural examples of semigroups given by generators and
defining relators, where the word problem admits a sublinear time
solution for “most” inputs?

If an algorithm for a sublinear time solution of the word problem exists, it
will only give “negative” answers, i. e., g 6= h in G . This is similar to
results of [KMSS], where (generically) linear time solution of the word
problem was offered for several large classes of groups; their solution,
too, gives only “negative” answers.

One potential source of semigroups with the property in question is
“positive monoids” associated with groups, i.e., monoids generated by
group generators, but not their inverses. For some particular groups, e.g.
for braid groups, Thompson’s group, these monoids have been extensively
studied.

26 / 51

The word problem for semigroups

Given two words g , h in generators of a semigroup G , find out whether or
not g = h in G .

Problem

Are there natural examples of semigroups given by generators and
defining relators, where the word problem admits a sublinear time
solution for “most” inputs?

If an algorithm for a sublinear time solution of the word problem exists, it
will only give “negative” answers, i. e., g 6= h in G . This is similar to
results of [KMSS], where (generically) linear time solution of the word
problem was offered for several large classes of groups; their solution,
too, gives only “negative” answers.

One potential source of semigroups with the property in question is
“positive monoids” associated with groups, i.e., monoids generated by
group generators, but not their inverses. For some particular groups, e.g.
for braid groups, Thompson’s group, these monoids have been extensively
studied.

27 / 51

The word problem for semigroups

Given two words g , h in generators of a semigroup G , find out whether or
not g = h in G .

Problem

Are there natural examples of semigroups given by generators and
defining relators, where the word problem admits a sublinear time
solution for “most” inputs?

If an algorithm for a sublinear time solution of the word problem exists, it
will only give “negative” answers, i. e., g 6= h in G . This is similar to
results of [KMSS], where (generically) linear time solution of the word
problem was offered for several large classes of groups; their solution,
too, gives only “negative” answers.

One potential source of semigroups with the property in question is
“positive monoids” associated with groups, i.e., monoids generated by
group generators, but not their inverses. For some particular groups, e.g.
for braid groups, Thompson’s group, these monoids have been extensively
studied.

28 / 51

The word problem for semigroups

Given two words g , h in generators of a semigroup G , find out whether or
not g = h in G .

Problem

Are there natural examples of semigroups given by generators and
defining relators, where the word problem admits a sublinear time
solution for “most” inputs?

If an algorithm for a sublinear time solution of the word problem exists, it
will only give “negative” answers, i. e., g 6= h in G . This is similar to
results of [KMSS], where (generically) linear time solution of the word
problem was offered for several large classes of groups; their solution,
too, gives only “negative” answers.

One potential source of semigroups with the property in question is
“positive monoids” associated with groups, i.e., monoids generated by
group generators, but not their inverses. For some particular groups, e.g.
for braid groups, Thompson’s group, these monoids have been extensively
studied.

29 / 51

Thompson’s monoid

Thompson’s group F :

F = 〈x0, x1, x2, . . . | xkxi = xixk+1 (k > i)〉.

Since all defining relators in this presentation are pairs of positive words,
we can consider the positive monoid associated with this presentation;
denote it by F+.

Proposition

For any two positive words w1 and w2 of lengths m and n, respectively, in
the alphabet X = {x0, x1, x2, . . .}, there are positive words z1 and z2 of
lengths n and m, respectively, such that w1z1 = w2z2 in Thompson’s
group F .

This proposition implies, in particular, that it is impossible to tell that
two positive words of length L in the alphabet X = {x0, x1, x2, . . .} are
not equal in Thompson’s group F by inspecting their initial segments of
length ≤ L

2 , i.e., there is at least no such straightforward sublinear time
algorithm for detecting inequality in F+.

30 / 51

Thompson’s monoid

Thompson’s group F :

F = 〈x0, x1, x2, . . . | xkxi = xixk+1 (k > i)〉.

Since all defining relators in this presentation are pairs of positive words,
we can consider the positive monoid associated with this presentation;
denote it by F+.

Proposition

For any two positive words w1 and w2 of lengths m and n, respectively, in
the alphabet X = {x0, x1, x2, . . .}, there are positive words z1 and z2 of
lengths n and m, respectively, such that w1z1 = w2z2 in Thompson’s
group F .

This proposition implies, in particular, that it is impossible to tell that
two positive words of length L in the alphabet X = {x0, x1, x2, . . .} are
not equal in Thompson’s group F by inspecting their initial segments of
length ≤ L

2 , i.e., there is at least no such straightforward sublinear time
algorithm for detecting inequality in F+.

31 / 51

Thompson’s monoid

Thompson’s group F :

F = 〈x0, x1, x2, . . . | xkxi = xixk+1 (k > i)〉.

Since all defining relators in this presentation are pairs of positive words,
we can consider the positive monoid associated with this presentation;
denote it by F+.

Proposition

For any two positive words w1 and w2 of lengths m and n, respectively, in
the alphabet X = {x0, x1, x2, . . .}, there are positive words z1 and z2 of
lengths n and m, respectively, such that w1z1 = w2z2 in Thompson’s
group F .

This proposition implies, in particular, that it is impossible to tell that
two positive words of length L in the alphabet X = {x0, x1, x2, . . .} are
not equal in Thompson’s group F by inspecting their initial segments of
length ≤ L

2 , i.e., there is at least no such straightforward sublinear time
algorithm for detecting inequality in F+.

32 / 51

Thompson’s monoid

Thompson’s group F :

F = 〈x0, x1, x2, . . . | xkxi = xixk+1 (k > i)〉.

Since all defining relators in this presentation are pairs of positive words,
we can consider the positive monoid associated with this presentation;
denote it by F+.

Proposition

For any two positive words w1 and w2 of lengths m and n, respectively, in
the alphabet X = {x0, x1, x2, . . .}, there are positive words z1 and z2 of
lengths n and m, respectively, such that w1z1 = w2z2 in Thompson’s
group F .

This proposition implies, in particular, that it is impossible to tell that
two positive words of length L in the alphabet X = {x0, x1, x2, . . .} are
not equal in Thompson’s group F by inspecting their initial segments of
length ≤ L

2 , i.e., there is at least no such straightforward sublinear time
algorithm for detecting inequality in F+.

33 / 51

Proof

Proof. (due to V.Guba) Construct the following van Kampen diagram.
On a square lattice, mark one point as the origin. Starting at the origin
and going to the right, write the word w1 by marking edges of the lattice
by the letters of w1, read left to right. Then, starting at the origin and
going up, write the word w2 by marking edges of the lattice by the letters
of w2, read left to right.

Now start marking edges of the lattice inside the rectangle built on
segments of length m (horizontally) and n (vertically) corresponding to
the words w1 and w2, as follows. All horizontal edges in the lattice are
directed from left to right, and all vertical edges are directed from
bottom to top. Then, suppose a single square cell of the lattice has:

34 / 51

Proof

Proof. (due to V.Guba) Construct the following van Kampen diagram.
On a square lattice, mark one point as the origin. Starting at the origin
and going to the right, write the word w1 by marking edges of the lattice
by the letters of w1, read left to right. Then, starting at the origin and
going up, write the word w2 by marking edges of the lattice by the letters
of w2, read left to right.

Now start marking edges of the lattice inside the rectangle built on
segments of length m (horizontally) and n (vertically) corresponding to
the words w1 and w2, as follows. All horizontal edges in the lattice are
directed from left to right, and all vertical edges are directed from
bottom to top. Then, suppose a single square cell of the lattice has:

35 / 51

Proof

xi on the lower edge and xi on the left edge. Then we mark the
upper edge and the right edge of this cell with the same xi . This cell
now corresponds to the relation xixi = xixi .

xi on the lower edge and xj on the left edge, where i < j . Then we
mark the upper edge of this cell with xi , and the right edge with
xj+1. This cell now corresponds to the relation xjxix

−1
j+1x

−1
i = 1, or

xjxi = xixj+1.

xi on the lower edge and xj on the left edge, where i > j . Then we
mark the upper edge of this cell with xi+1, and the right edge with
xj . This cell now corresponds to the relation xjxi+1x

−1
j x−1

i = 1, or
xjxi+1 = xixj .

After all edges of the rectangle built on segments corresponding to the
words w1 and w2 are marked, we read a relation of the form
w2u1u

−1
2 w−1

1 = 1, or w2u1 = w1u2, off the edges of this rectangle. Here
the length of u1 is m and the length of u2 is n. This completes the proof.

36 / 51

Example

Example

If w1 = x1x2 and w2 = x3x5, this method gives w1x5x7 = w2x1x2.

37 / 51

Positive monoids of braid groups

We denote the braid group on n strands by Bn; this group has a standard
presentation

〈σ1, ..., σn−1| σiσj = σjσi if |i−j | > 1; σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n−2〉.

For at least some pairs of positive words in B+
n there is a sublinear time

test for inequality. The following proposition follows from [M. Autord,
P. Dehornoy, On the distance between the expressions of a permutation,
European J. Combin. 31 (2010), 1829–1846]; in particular, from the
proof of their Proposition 2.9.

Proposition

Let w1 = σ1σ3 · · ·σ2m−1, w2 = σ2mσ2m−2 · · ·σ2. Suppose w1u = w2v
for some u, v ∈ B+

n , n > 2m. Then |u|, |v | = 2m2.

Thus, in particular, if one has two positive braid words of length L, where
one of them starts with σ1σ3 · · ·σ2k−1, the other one starts with
σ2kσ2k−2 · · ·σ2, and k ≥

√
L, then these braid words are not equal in

B+
n , n > 2k.

38 / 51

Positive monoids of braid groups

We denote the braid group on n strands by Bn; this group has a standard
presentation

〈σ1, ..., σn−1| σiσj = σjσi if |i−j | > 1; σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n−2〉.

For at least some pairs of positive words in B+
n there is a sublinear time

test for inequality. The following proposition follows from [M. Autord,
P. Dehornoy, On the distance between the expressions of a permutation,
European J. Combin. 31 (2010), 1829–1846]; in particular, from the
proof of their Proposition 2.9.

Proposition

Let w1 = σ1σ3 · · ·σ2m−1, w2 = σ2mσ2m−2 · · ·σ2. Suppose w1u = w2v
for some u, v ∈ B+

n , n > 2m. Then |u|, |v | = 2m2.

Thus, in particular, if one has two positive braid words of length L, where
one of them starts with σ1σ3 · · ·σ2k−1, the other one starts with
σ2kσ2k−2 · · ·σ2, and k ≥

√
L, then these braid words are not equal in

B+
n , n > 2k.

39 / 51

Positive monoids of braid groups

We denote the braid group on n strands by Bn; this group has a standard
presentation

〈σ1, ..., σn−1| σiσj = σjσi if |i−j | > 1; σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n−2〉.

For at least some pairs of positive words in B+
n there is a sublinear time

test for inequality. The following proposition follows from [M. Autord,
P. Dehornoy, On the distance between the expressions of a permutation,
European J. Combin. 31 (2010), 1829–1846]; in particular, from the
proof of their Proposition 2.9.

Proposition

Let w1 = σ1σ3 · · ·σ2m−1, w2 = σ2mσ2m−2 · · ·σ2. Suppose w1u = w2v
for some u, v ∈ B+

n , n > 2m. Then |u|, |v | = 2m2.

Thus, in particular, if one has two positive braid words of length L, where
one of them starts with σ1σ3 · · ·σ2k−1, the other one starts with
σ2kσ2k−2 · · ·σ2, and k ≥

√
L, then these braid words are not equal in

B+
n , n > 2k.

40 / 51

Positive monoids of braid groups (continued)

Of course, this is just a very special example where a sublinear time
algorithm can detect inequality of two words in B+

n , so the interesting
question is whether examples of this sort are “generic”. We therefore ask:

Problem

Is there a generic subset S of B+
n and a number ε > 0 such that for any

two braid words w1,w2 of length k representing elements of S , the
minimum length of words u, v such that w1u = w2v , is greater than
k(1+ε) ?

41 / 51

Positive monoids of braid groups (continued)

Of course, this is just a very special example where a sublinear time
algorithm can detect inequality of two words in B+

n , so the interesting
question is whether examples of this sort are “generic”. We therefore ask:

Problem

Is there a generic subset S of B+
n and a number ε > 0 such that for any

two braid words w1,w2 of length k representing elements of S , the
minimum length of words u, v such that w1u = w2v , is greater than
k(1+ε) ?

42 / 51

Positive monoids of free nilpotent groups

No sublinear time algorithm for the word problem.

[V. Shpilrain, Sublinear time algorithms in the theory of groups and
semigroups, Illinois J. Math. 54 (2011), 187–197].

43 / 51

Positive monoids of free nilpotent groups

No sublinear time algorithm for the word problem.

[V. Shpilrain, Sublinear time algorithms in the theory of groups and
semigroups, Illinois J. Math. 54 (2011), 187–197].

44 / 51

Average-case complexity of the word problem

Still, “fast checks” (e.g. considering abelianization) can be used as
average-case performance boosters, even if it does not lead to a sublinear
time average-case algorithm.

For example, it is known that there are algorithms for solving the word
problem in nilpotent groups in polynomial time, where the degree of the
polynomial grows with the nilpotency class.

Problem

What is the best (over all “honest” algorithms) average-case complexity
of the word problem in a free nilpotent group?

Note: if an input is given by coordinates in a Malcev basis, then the word
problem (in any f.g. nilpotent group) can be solved in quasi-linear time,
according to [J. Macdonald, A. Myasnikov, A. Nikolaev, S. Vassileva,
Logspace and compressed-word computations in nilpotent groups,
https://arxiv.org/abs/1503.03888].

45 / 51

Average-case complexity of the word problem

Still, “fast checks” (e.g. considering abelianization) can be used as
average-case performance boosters, even if it does not lead to a sublinear
time average-case algorithm.

For example, it is known that there are algorithms for solving the word
problem in nilpotent groups in polynomial time, where the degree of the
polynomial grows with the nilpotency class.

Problem

What is the best (over all “honest” algorithms) average-case complexity
of the word problem in a free nilpotent group?

Note: if an input is given by coordinates in a Malcev basis, then the word
problem (in any f.g. nilpotent group) can be solved in quasi-linear time,
according to [J. Macdonald, A. Myasnikov, A. Nikolaev, S. Vassileva,
Logspace and compressed-word computations in nilpotent groups,
https://arxiv.org/abs/1503.03888].

46 / 51

Average-case complexity of the word problem

Still, “fast checks” (e.g. considering abelianization) can be used as
average-case performance boosters, even if it does not lead to a sublinear
time average-case algorithm.

For example, it is known that there are algorithms for solving the word
problem in nilpotent groups in polynomial time, where the degree of the
polynomial grows with the nilpotency class.

Problem

What is the best (over all “honest” algorithms) average-case complexity
of the word problem in a free nilpotent group?

Note: if an input is given by coordinates in a Malcev basis, then the word
problem (in any f.g. nilpotent group) can be solved in quasi-linear time,
according to [J. Macdonald, A. Myasnikov, A. Nikolaev, S. Vassileva,
Logspace and compressed-word computations in nilpotent groups,
https://arxiv.org/abs/1503.03888].

47 / 51

Conclusions

1. While the worst-case and generic-case complexity of algorithms in
group theory have been well studied, this is not the case with the
average-case complexity. It may be time to seriously address the
average-case complexity, at least in some “smooth” groups.

2. Those “fast checks” that are Las Vegas type algorithms can be used
to boost performance of some well-established “honest” algorithms and
reduce their average-case complexity when run in parallel.

48 / 51

Conclusions

1. While the worst-case and generic-case complexity of algorithms in
group theory have been well studied, this is not the case with the
average-case complexity. It may be time to seriously address the
average-case complexity, at least in some “smooth” groups.

2. Those “fast checks” that are Las Vegas type algorithms can be used
to boost performance of some well-established “honest” algorithms and
reduce their average-case complexity when run in parallel.

49 / 51

Conclusions

1. While the worst-case and generic-case complexity of algorithms in
group theory have been well studied, this is not the case with the
average-case complexity. It may be time to seriously address the
average-case complexity, at least in some “smooth” groups.

2. Those “fast checks” that are Las Vegas type algorithms can be used
to boost performance of some well-established “honest” algorithms and
reduce their average-case complexity when run in parallel.

50 / 51

Thank you

51 / 51

