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Equations over an arbitrary group G:
aXY ! = bXaY

W.l.0.g. of the form
a=1

for an expression o € (G U X U X~1)* (with variables X).
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The EQN-SAT(G) problem:

Constant: The group G
Input: an expression a € (GU X U X~1)*
Question: 3 an assignment 0 : X — G s.t. o) =17

The EQN-ID(G) problem:

Constant: The group G
Input: an expression a € (GU X U X~ 1)*
Question: is o(«) =1V assignments o : X — G?

In many infinite groups these problems are undecidable!
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» Input: a € (GUX UX1),

» for each g € G\ 1 check whether ag™!

is satisfiable,

» if yes, then « is not an identity.
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Complexity of equations in finite groups

In finite groups EQN-SAT(G) is in NP:
> Input: o € (GUX UX L)Y,
» for each variable X € X that appears in a, guess o(X) € G,
> evaluate o(a).

and EQN-ID(G) is in coNP.

Finer classification with respect to complexity?

> EQN-SAT(G x H) € P <= EQN-SAT(G) € P and EQN-SAT(H) € P
> EQN-SAT(G/H) <7 EQN-SAT(G)
» if H is a verbal subgroup, then EQN-SAT(H) <P EQN-SAT(G)

» But: there are monoids N < M such that EQN-SAT(M) € P but EQN-SAT(N) is
NP-complete
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TERMID(G)
Constant: The group G
Input: an expression « € (X U X~1)*

Question: is o(«) =1V assignments 0 : X — G?

PROGRAMSAT(G)
Constant: The group G
Input: a G-program P € (X x G x G)*

Question: 3 an assignment 0 : X — {0,1} s.t. o(P) =17

Roughly: like EQN-SAT but variables are restricted to two values.

Observation
TerMID(G) <P EQN-ID(G) <% EQN-SAT(G) <P PROGRAMSAT(G)
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Theorem (Goldmann, Russell, 2002)

» |f G is non-abelian, satisfiability of systems of equations in G is NP complete.

» [f G is abelian, satisfiability of systems of equations in G is in P.
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Theorem (Foldvari, Horvath 2020)

> EQN-SAT(Q x A) € P for Q a p-group, A abelian.
» EQN-ID(N x A) € P for N nilpotent, A abelian.

EQN-SAT(G) EQN-ID(G)
nilpotent in P (actually ACC®) in P (actually ACC?)
in NP in coNP
solvable, o ) o
non-nilpotent p-group x abelian in P nilpotent x abelian in P
77 77
non-solvable NP-complete coNP-complete
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The role of commutators

For showing NP-completeness: reduce 3SAT to EQN-SAT(G)
~~ need to encode conjunctions/disjunctions

Usually: encode false by 1 and true by # 1 € G.

Consider the following problem:
» There are two nails in the wall.

» You have a rope and a picture hanging on the
rope.

» You want to wrap the rope around the nails \ ;
such that, if you remove one of the nails, the ———
picture falls down. _— ==

7?7 ifx#£landy #1

Commutators: [x,y] = x" 1y Ixy = _
1 otherwise.
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Examples: S3 and G*

S3 = group of permutations over three elements

= symmetry group of a regular triangle

d s _
/\x = {1,(\1;2),(1 3),(23),(153),(132)}
. =GxG

= F({S,d})/{52:d3:1,d525d2}

~w [d,s]=d lsTlds =dld7t = d

X71y=1Xy = (123) X71y=1Xy = (12) Y(123)XXY = (132)




Examples: S3 and G*

2>

dzf \ )

3 1 G* = G648,705 =531CG = (53 X 53 % 53) x C3

@( “ :\/1,53 d( “ :\/1,51

31

with a(x,y,z) = (z,x,y)a
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The Fitting length

Commutators: [x,y] = x"ty~Ixy and [x1,...,x] = [[x1, ..., xk—1], xk]
G is nilpotent of class ¢ iff Vx1,...,xc+1 € G : [x1,...,Xc41] = 1.

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such that there are

normal subgroups
1=Ny<s Ny a---<aNe=6G

with N;/N;_1 nilpotent for all i =1,... k.

FitLen(S3) =2: 1 < G3 < S3 with S3/CG = G

FitLen(G*) =31« (C3 x (3 X C3) < (53 X S3 X 53) < G*
| 4 (53X53><S3)/(C3><C3XC3):(C2XC2><C2)
> G*/(S3x S3x S53)=GC3
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Exponential time hypothesis

Exponential time hypothesis (ETH)

36 > 0 s.t. every algorithm for 3SAT needs time Q(2°") (n = number of variables).

Sparsification Lemma (Impagliazzo, Paturi, Zane, 2001)

ETH — 3¢ > 0 s.t. every algorithm for 3SAT needs time Q(2<(m+n))
(m = number of clauses).

~= no 2°ntm)_time algorithm for 3SAT under ETH.
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Main results

Theorem (W., ICALP 2020)
Let G be finite solvable group and assume that either
» FitLen(G) > 4, or
» FitLen(G) = 3 and there is no Fitting-length-two normal subgroup whose index is a
power of two.
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What about other groups of Fitting-length three?

Theorem (ldziak, Kawatek, Krzaczkowski, LICS 2020 )
EQN-SAT(Ss) and EQN-ID(S4) are not in P under ETH.

(S4 = symmetric group on 4 elements)



Main results

Theorem (ldziak, Kawatek, Krzaczkowski, W.)

Let G be finite solvable group of Fitting length d > 3. Then EQN-SAT(G) and
EQN-ID(G) cannot be decided in time 20(loe ' V) yndler ETH.

In particular, EQN-SAT(G) and EQN-ID(G) are not in P under ETH.
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C-COLORING

A C-coloring for C € Nof a graph ' = (V,E)isamap x: V — [1..C].
A coloring x valid if x(u) # x(v) whenever {u,v} € E.

o0 0

The C-COLORING problem:

Input: given an undirected graph I = (V/, E)
Question: 3 a valid C-coloring of '?

» NP-complete for C > 3
» 3-COLORING cannot be solved in time 2°UVI+ED ynless ETH fails

(see e.g. Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh,
Thm. 14.6).

» ~~ for every C > 3, C-COLORING cannot be solved in time 20(IVI+IE]) ynless ETH fails.
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Reduce 2-COLORING to EQN-SAT(S;)

= (V,E) graph with V ={1,...,n}
E={e,...,em} where e, = {ix,jk}

» For every vertex i introduce a variable X;.

.. -1
> For every edge ex = {ik,jk} set a = X,-kak .

> Set B=[d,on,...,am] = [-[[d, 1], 2], ..., am] (recall d = (123)).

B = d is satisfiable <= T is 2-colorable. \

Proof.

Recall: C3 <155 and S3/C = Co. Let o : { X1, ..., Xn} — G.
Define a coloring x, : V — {1,2} by x,(i) =1 < o(X;) € G.
1 if a(al) € G

d ifo(ar) € G

a(ld,a1]) = {
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= (V,E) graph with V ={1,...,n}
E={e,...,em} where e, = {ix,jk}

» For every vertex i introduce a variable X;.

.. -1
> For every edge ex = {ik,jk} set a = X,-kak .

> Set B=[d,on,...,am] = [-[[d, 1], 2], ..., am] (recall d = (123)).

B = d is satisfiable <= T is 2-colorable. \

Proof.

Recall: C3 <153 and S3/C3 =G, Leto: {Xy,..., X} — G.
Define a coloring x, : V — {1,2} by x,(i) =1 < o(X;) € G.
1 if a(al) € G

d if U(Oq) € C3 < Xa(il) 7& Xa(jl)

a(ld,a1]) = {




Reduce 2-COLORING to EQN-SAT(S;)

= (V,E) graph with V ={1,...,n}
E={e,...,em} where e, = {ix,jk}

» For every vertex i introduce a variable X;.

.. -1
> For every edge ex = {ik,jk} set a = X,-kak .

> Set B=[d,on,...,am] = [-[[d, 1], 2], ..., am] (recall d = (123)).

Length: |5] ~ 2™.

[d, 041] = d_lal_ldal

[d, a1, 0] = al_1d_1a1d042_1d_1041_1d041042

1 1

11,1 1 1 1 11 1,1 -1
[d,a1,a2,03] = a5 o™ d " apdand ™ o T tdag 3T o TN d T T oqdag TdT o T T dagag a3
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~» need Fitting length 3
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Group the edges in u &~ /m groups of u edges each.
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Set Bk = Yk_l[(s7 1,1),ak1,--.,aku] Yk for a new variable Y.
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> Set v =[(d,1,1),A1,. ... Bul.
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Recall: G* = (53 x S3 x S3) x C3
= (V,E) graphwith V={1,...,n}, E={e1,...,em}.
» For every vertex i introduce a variable X;.
» Group the edges in p & \/m groups of u edges each.
> For every edge ex s = {u, v} set ax, = X, X, 1.
> Set [y = Yk_l[(s7 1,1),ak1,--.,aku] Yk for a new variable Y.
» Set vy =[(d,1,1),51,..., 8.l

~v=(d,1,1) is satisfiable <= T is 3-colorable.
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Reduce 3-COLORING to EQN-SAT(G*)

Recall: G* = (53 x S3 x S3) x C3
= (V,E)graphwith V={1,...,n}, E={e1,...,em}.
» For every vertex i introduce a variable X;.
Group the edges in u ~ /m groups of 1 edges each.
For every edge ex s = {u, v} set axp = X, X, 1.
Set Bk = Yk_l[(s7 1,1),ak1,--.,aku] Yk for a new variable Y.
Set v =[(d,1,1),B1,..., B4l
Key Observation
B~ 2~ [y] s 2 2 o 22V

>
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Assume EQN-SAT(G*) decidable in time 2°0°8° V) (N = equation length).
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Recall: G* = (53 x S3 x S3) x C3
= (V,E) graphwith V={1,...,n}, E={e1,...,em}.
» For every vertex i introduce a variable X;.
» Group the edges in p & \/m groups of u edges each.
> For every edge ex s = {u, v} set ax, = X, X, 1.
> Set [y = Yk_l[(s7 1,1),ak1,--.,aku] Yk for a new variable Y.
» Set vy =[(d,1,1),51,..., 8.l

Key Observation
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Reduce 3-COLORING to EQN-SAT(G*)

Recall: G* = (53 x S3 x S3) x C3
= (V,E) graphwith V={1,...,n}, E={e1,...,em}.
» For every vertex i introduce a variable X;.
» Group the edges in p & \/m groups of u edges each.
> For every edge ex s = {u, v} set ax, = X, X, 1.
> Set [y = Yk_l[(s7 1,1),ak1,--.,aku] Yk for a new variable Y.
» Set vy =[(d,1,1),51,..., 8.l

Key Observation
Bel 2%~ 9] s 20 2 s 22V

Assume EQN-SAT(G*) decidable in time 2°0°8° V) (N = equation length).
Then we can solve 3-COLORING in time 20(mtm).
with N = 22V we have 20008°2Y™) — 20(vm") — 20(m) contradicting ETH.
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Find normal subgroups L < K < H < G such that

» FitLen(K) =d — 1,

» for all g € G\ H the map x — [x, g] is an automorphism of K/L.
~ s(x,g) =[x,8,...,8] =x mod L forallxe Kand ge G\H

Two cases:
» If |G/H| = C > 3, reduce C-COLORING:
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XS(S(S(X, Yl), YQ), Y3)71 simulates (X, Y1, Yo, Y3) = XA (—\Yl VaYs Vv ﬂY3).



Reduction for other groups

Let G be a finite solvable group of Fitting length d > 3.

Find normal subgroups L < K < H < G such that

» FitLen(K) =d — 1,

» for all g € G\ H the map x — [x, g] is an automorphism of K/L.
~ s(x,g) =[x,8,...,8] =x mod L forallxe Kand ge G\H

Two cases:
» If |G/H| = C > 3, reduce C-COLORING:

> group edges into ¢3/m groups, each group again into “7/m groups,. ..
» need to take some care to which values our expressions can evaluate.

» If |G/H| =2, reduce 3SAT:
» 1 means false, g € G\ H means true
XS(S(S(X, Yl), YQ), Y3)71 simulates (X, Y1, Yo, Y3) = XA (—\Yl VaYs Vv ﬁY3).

» group clauses into “7/m groups,. ..



Monoids / Semi-groups

Two expressions as input.



Monoids / Semi-groups

Two expressions as input.

If a semi-group S has a group divisor of Fitting length at least 3, then EQN-SAT(S) is not
in P under ETH.

G is a divisor of S if G is a quotient of a sub-semigroup of S.



Monoids / Semi-groups

Two expressions as input.

If a semi-group S has a group divisor of Fitting length at least 3, then EQN-SAT(S) is not
in P under ETH.

G is a divisor of S if G is a quotient of a sub-semigroup of S.

Theorem (Barrington, McKenzie, Moore, Tesson, Thérien, 2000)

There is a 6-element monoid M such that EQN-SAT(M) is NP-complete.




Monoids / Semi-groups

Two expressions as input.

If a semi-group S has a group divisor of Fitting length at least 3, then EQN-SAT(S) is not
in P under ETH.

G is a divisor of S if G is a quotient of a sub-semigroup of S.

Theorem (Barrington, McKenzie, Moore, Tesson, Thérien, 2000)
There is a 6-element monoid M such that EQN-SAT(M) is NP-complete.

What about EQN-ID?



Monoids / Semi-groups

Two expressions as input.

If a semi-group S has a group divisor of Fitting length at least 3, then EQN-SAT(S) is not
in P under ETH.

G is a divisor of S if G is a quotient of a sub-semigroup of S.

Theorem (Barrington, McKenzie, Moore, Tesson, Thérien, 2000)
There is a 6-element monoid M such that EQN-SAT(M) is NP-complete.

What about EQN-ID?

Theorem (Almeida Volkov, Goldberg, 2009)
If G is a maximal subgroup of S, then TERMID(G) <P TERMID(S).
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EQN-SAT(G) <P PROGRAMSAT(G)

~- all lower bounds also apply to PROGRAMSAT(G)



G-programs

PROGRAMSAT(G)
Constant: The group G
Input: a G-program P € (X x G x G)*

Question: 3 an assignment 0 : X — {0,1} s.t. o(P) =17

Observation
EQN-SAT(G) <P PROGRAMSAT(G)

~- all lower bounds also apply to PROGRAMSAT(G)

Theorem (Barrington, McKenzie, Moore, Tesson, Thérien, 2000)

If the n-input AND function can be computed via G-programs of polynomial length, then
PROGRAMSAT(G ! Ck) is NP-complete (for k > 4).

Does a similar result hold for EQN-SAT or EQN-ID?
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» Quasipolynomial lower bound for EQN-SAT(G) and EQN-ID(G) under ETH if G if
of Fitting length 3.
» Matching upper bounds?

» What about groups of Fitting length two?

> EQN-SAT in P for p-groups by abelian groups.
EQN-ID in P for nilpotent-by-abelian groups.
EQN-SAT(D;5) and similar groups not in P under ETH (ldziak, Kawatek, Krzaczkowski).
Their proof also works for showing that PROGRAMSAT(S; x A4) (and similar groups) is
not in P under ETH.
> Smallest unknown example: (G x G x G3) % Go.

vvyy

» Complexity of versions without constants?
» What if the group is part of the input?



Conclusion / Open Problems

Quasipolynomial lower bound for EQN-SAT(G) and EQN-ID(G) under ETH if G if
of Fitting length 3.
Matching upper bounds?

| 2

>

>

What about groups of Fitting length two?

>

vvyy

>

EQN-SAT in P for p-groups by abelian groups.

EQN-ID in P for nilpotent-by-abelian groups.

EQN-SAT(D;5) and similar groups not in P under ETH (ldziak, Kawatek, Krzaczkowski).
Their proof also works for showing that PROGRAMSAT(S; x A4) (and similar groups) is
not in P under ETH.

Smallest unknown example: (G x G x G3) x G,.

Complexity of versions without constants?

What if the group is part of the input?

Thank you!
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