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» FO sentences are built of
relational symbols ~, =;
logical connectives —, =, <, V, A;
variables =, y, x1, ...;
quantifiers V, 3.

» G | ¢ — the sentence ¢ is true for the graph G (or G models ¢).

» FO property € is define by a FO formula ¢:
GelCelGEo.
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Quantifier depth

Quantifier depth D(¢) —
length of the longest path of nested quantifiers of ¢
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Quantifier depth and variable width

Variable width W (¢) —
number of different variables of ¢

¢ =3z (3y[z ~ y]A
[Fz([z # 2 A [x 2 2] Aly ~ 2] A [Tz (@~ 2) A (2 # y)])])
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Some examples

e property of a graph to be complete
VaVy (—(z =y) = (z ~y)).

D=W=2.
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Some examples
e property of a graph to be complete
VaVy (—(z =y) = (z ~y)).

D=W=2.

e property of a graph to contain a triangle

drIyIz (x~y)A(y~z)A(z~2).

D=W=3.

e property of a graph to have chromatic number k;
e property of a graph to be complete;
e property of a graph to have even number of vertices.

5/ 25



Subgraph Isomorphism
For a FO property 8, let

» D(8) — minimal quantifier depth of a FO sentence defining 8,
» W(8) — minimal variable width of a FO sentence defining 8.

Remark: W (8) < D(8).
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Subgraph Isomorphism
For a FO property 8, let

» D(8) — minimal quantifier depth of a FO sentence defining 8,
» W(8) — minimal variable width of a FO sentence defining 8.

Remark: W (8) < D(8).

F — fixed graph on /¢ vertices.

S(F') — set of all graphs containing an isomorphic copy of F.
Problem: find D(F) = D(8(F)) and W (F) := W(S8(F)).
Trivial upper bound: W(F) < D(F) < £.

Observation
No FO sent. ¢ with W(¢) < ¢ distinguish between K, and K;_;.
Therefore, D(F) = W (F) = (.
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Induced Subgraph Isomorphism

S8[F] — set of all graphs containing an induced isomorphic copy of F.
Problem: find D[F] := D(8[F]) and W[F] = W (8[F)).

Trivial upper bound: W[F| < D[F] < /.

Is it true that W[F| = D[F]| = ¢ for every F'?
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Induced Subgraph Isomorphism

S8[F] — set of all graphs containing an induced isomorphic copy of F.
Problem: find D[F] := D(8[F]) and W[F] = W (8[F)).

Trivial upper bound: W[F| < D[F] < /.

Is it true that W[F| = D[F]| = ¢ for every F'?  Nol!

Let F = K3 + e (paw).
Olariu, 1988

A graph G is paw-free if and only if each connected component of H is
triangle-free or complete multipartite.

DI[F] < 3, because the following sentence defines §[F]:
Jzq ([FroTzs([z1 ~ z2] A [21 ~ 23] A [T2 ~ 23])]A
[3332([331 % 562] A [3%‘3([%‘1 ~ 563] A [932 ~ l‘g])]/\
[Bas([zs ~ z1] A [z o 22])])]
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Algorithmic motivation

» SI and ISI problems for a pattern graph on £ vertices are solvable
in time O(n') on n-vertex input graphs by exhaustive search.
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Algorithmic motivation

>

SI and ISI problems for a pattern graph on ¢ vertices are solvable
in time O(n') on n-vertex input graphs by exhaustive search.
Nesetfil and Poljak, 1985: both §(F') and 8[F] can be recognized
in time O(n“/3*2) where w < 2.373.

Alon, Yuster and Zwick 1995: §(F') can be recognized in time
20(0) . ptw(F)+1 56,

Chen, Huang, Kanj, and Xia, 2006: SI problem for K is
unsolvable in time n°® unless the Exponential Time Hypothesis
fails.

Courcelle, 1990: every graph property definable by a sentence in
monadic second-order logic can be efficiently decided on graphs of
bounded treewidth.

In particular, for Subgraph Isomorphism, Courcelle’s theorem
implies time bound f(/,tw) - n for any class of input graphs having
treewidth at most tw.
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Graph parameters

For SI, we consider three classes of input-graphs:

o sufficiently large connected graphs,
e graphs with sufficiently large treewidth,

e graphs with sufficiently large connectivity.

connectivity

Let G be a graph with at least k + 1 vertices.

G is k-connected if it is connected, and remains connected after
removal of any k — 1 vertices.

The connectivity (@) is equal to the maximum k& such that G is
k-connected.
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Treewidth

A tree decomposition of a graph G = (V, E) is a tree T with vertices
X1,...,X, such that

» X;CViforalli,and XU...UX,=V;

» if v € X; N X, then all nodes X, in the unique path path between
X; and X contain v;

» for every edge v ~ w in E, there is i such that v,w € Xj.

The width of 7" equals max; | X;| — 1. The treewidth tw(G) is the
minimum width among all possible tree decompositions of G.
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Relaxations for SI

Let w be a graph parameter.

» DF(F) — minimum quantifier depth of a FO sentence defining
8(F) over connected graphs G with 7(G) > k. For every k,
DE(F) > DEFL(F).

Denote D, (F) = ming DX(F) — minimum quantifier depth of a
FO sentence defining S(F') over connected graphs with sufficiently
large values of .

» In the same way, W, (F) is the minimum variable width of a FO
sentence defining S(F) over connected graphs with sufficiently large
values of .
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Relaxations for SI
Let w be a graph parameter.

» DF(F) — minimum quantifier depth of a FO sentence defining
8(F') over connected graphs G with 7(G) > k. For every k,
DE(F) > DEFL(F).

Denote D, (F) = ming DX(F) — minimum quantifier depth of a
FO sentence defining S(F') over connected graphs with sufficiently
large values of .

» In the same way, W (F') is the minimum variable width of a FO
sentence defining S(F) over connected graphs with sufficiently large
values of .

Inequalities k(G) < tw(G) < v(G) imply
Wv<F) > Wtw(F) > VI/K(F)
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Subgraph Isomorphism for connected input-graphs of
large size: general results
Theorem

Dy (F) < 20+ 1 for infinitely many connected F.

Wy(F) > %E — 2 for every connected F.
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Subgraph Isomorphism for connected input-graphs of

large size: general results

Theorem

Dy (F) < 20+ 1 for infinitely many connected F.

Wy(F) > %6 — 2 for every connected F.

g-1

Sap
Theorem

D, (Sy,p) < max{p, %p +qg—2— %p mod 2} + 2.
Wy (Sgp = max{p, %P +q—2— %p mod 2}.
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The lower bound
Let v be a vertex of a connected graph F.

By a v-branch of F' we mean a subgraph of F' induced by the vertex set
of a connected component of F'\ v in union with the vertex v itself.
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The lower bound
Let v be a vertex of a connected graph F.

By a v-branch of F' we mean a subgraph of F' induced by the vertex set
of a connected component of F'\ v in union with the vertex v itself.

Let S be a v-branch of F.
» If S = P,41 and degv # 2, then S is a pendant path.
p(F') — maximum ¢ such that F' has a pendant Ppy;.

» If S = K 4+1 with central vertex adjacent to v and degv > 1,
then S is a pendant star.

s(F') — maximum s, such that F' has a pendant K .

» If S =5,,, v is the end vertex of the tail part of .S, degv # 2,
then S is a pendant sparkler subgraph.

sp(F') — maximum p such that F' has a pendant S ,, ¢ > 3.

Theorem
Wy(F) > ¢ —1—min{s(F),p(F), sp(F) — 2}.
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Subgraph Isomorphism for connected input-graphs of
large size: sequences

> DU(Pg) =/ — 1, WU(Pg) =0 2.
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Subgraph Isomorphism for connected input-graphs of

large size: sequences

> Dv(Pg) =/ - 1, Wv(Pg) =/—2.

» For every ¢ > 4,

Dy(Kyp-1) =4, Wy(Kie1)=1(—-1

i

> If 6(F) > 2, then Dy (F) = W, (F) = /.

In particular, for every ¢ > 3,
D, (Cy) = Wy(Cy) = Dy(Ky) = Wy (Ky) = L.
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Subgraph Isomorphism for input-graphs width large
treewidth or connectivity: general results

Theorem
If F is connected, then Wy, (F) > tw(F) + 1 unless F is contained in
some 3-megastar Msp.
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Subgraph Isomorphism for input-graphs width large
treewidth or connectivity: general results

Theorem

If F' is connected, then Wi, (F') > tw(F') + 1 unless F' is contained in
some 3-megastar Msp.

Theorem
If e(F) > v(F), then
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Subgraph Isomorphism for input-graphs with large
treewidth or large connectivity: sequences

>a

La,b

Theorem
Fora >3 th(La,b) = Wtw(La,b) = H(L(l,b) = Wn(La,b) = a.
In particular, — Dy,(K¢) = Wi (Kp) = D (Ky) = Wi (Ky) = L.
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Subgraph Isomorphism for input-graphs with large
treewidth or large connectivity: sequences

Theorem
For a Z 3 th(La,b) = Wtw(La,b) = DH(LGJ,) = WE(LQJ,) = Q.
In particular, — Dy,(K¢) = Wi (Kp) = D (Ky) = Wi (Ky) = L.

The minimal degree of a k-connected graph is at least k. Therefore, if
F' is a tree, then D, (F) = W.(F) = 1.

16 / 25



Subgraph Isomorphism: small graphs
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Subgraph Isomorphism: arbitrary relations
» B. Rossman, 2016: Wa,,(F) < tw(F) + 3, Dar,(F) < td(F) + 2.

Tree-depth of GG is the minimum height of a forest F' with the
property that every edge of G connects a pair of nodes that have
an ancestor-descendant relationship to each other in F.
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Subgraph Isomorphism: arbitrary relations
» B. Rossman, 2016: Wa,,(F) < tw(F) + 3, Dar,(F) < td(F) + 2.

Tree-depth of GG is the minimum height of a forest F' with the
property that every edge of G connects a pair of nodes that have
an ancestor-descendant relationship to each other in F.

» B. Rossman, 2008: Wa,p(Ky) > %E.
Y. He, 2018 (7): Wam,(Kp) = ¢.
» O. Grigoryan, M. Makarov, MZ, 2020:
For a tree F,
Do(F) < 30+ [logy(¢ +2)] — 1, W (F) < 30+ 2.
For F' on 3 vertices,
if F'is connected, then D-(F) =3;  otherwise, D (F) = 2.

For F' on 4 vertices,
if FF D Cy, then D.(F) =4;  otherwise, D(F) = 3.
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Induced Subgraph Isomorphism: general result

Theorem
For every graph F on £ > 2 vertices,

WIF] > max{ Ez - 2log2€-‘ +2,x(F), ZE?; + 1} .
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Induced Subgraph Isomorphism: 3 and 4 vertices

D|[F] = D[F] = consider only connected patterns F
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Induced Subgraph Isomorphism: 3 and 4 vertices

DI[F] = D[F] = consider only connected patterns F

Theorem

» For every F' on ¢ = 3 vertices, D|F| = WI[F| = (.

» D[F|=WI[F]=¢ for every F' on ¢ = 4 vertices unless F'= L3 ;.
WiLzy] = D[L3a] =
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Induced Subgraph Isomorphism: 5 vertices

Theorem (E. Kudryavtsev, M. Makarov A. Shlychkova, MZ; 2019)
For every F on ¢ =5 vertices, D[F| € {¢ —1,/(}.

RN N
e N R

K3 Kipp K112

Remaining graphs:

ORI A AwA A Bo
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Induced Subgraph Isomorphism: large graphs

Theorem (E. Kudryavtsev, M. Makarov, A. Shlychkova, MZ; 2019)

» If F or F contains a connected component isomorphic to L3,
then D[F| < /¢ —1.
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Induced Subgraph Isomorphism: large graphs

Theorem (E. Kudryavtsev, M. Makarov, A. Shlychkova, MZ; 2019)

» If F or F contains a connected component isomorphic to Ls 1,
then D[F| < /¢ —1.

» If F is a disjoint union of L3y (or Ls 1) with isolated vertices,
then D[F| =/ — 1.

» If F' is complete multipartite or a disjoint union of isomorphic
complete multipartite graphs, then W[F] = £.
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Questions
» How large are D (P;) and W.(P)?

23 / 25



Questions
» How large are D (P;) and W.(P)?

» The lower bound W[F] > (1 — o(1))v(F) does not even exclude
the possibility that the time bound O(n"VI¥1) for ISI can be better
than O(n(“/3%+2) for infinitely many F.

23 / 25



Questions
» How large are D (P;) and W.(P)?

» The lower bound W[F] > (1 — o(1))v(F) does not even exclude
the possibility that the time bound O(n"VI¥1) for ISI can be better
than O(n(“/3%+2) for infinitely many F.

» The Nesettil-Poljak algorithm solves §[F] for the graphs on 5
vertices in time O(n*3"). For some of these graphs, this can be
improved to O(n*) (Floderus et al., 2015) and even to O(n®373) in
some cases (Williams et al., 2015). Is there F' such that W[F| = 37

23 / 25



Questions
» How large are D (P;) and W.(P)?

» The lower bound W[F] > (1 — o(1))v(F) does not even exclude

the possibility that the time bound O(n"VI¥1) for ISI can be better
than O(n(“/3%+2) for infinitely many F.

» The Nesettil-Poljak algorithm solves §[F] for the graphs on 5
vertices in time O(n*3"). For some of these graphs, this can be
improved to O(n*) (Floderus et al., 2015) and even to O(n®373) in
some cases (Williams et al., 2015). Is there F' such that W[F| = 37

» Is there F such that D[F] < ¢ — 27
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WI[F] > x(F): the proof

e k-th extension axiom Ej — the sentence of quantifier depth k saying
that, for every two disjoint sets X, Y C V(G) with | X UY'| < k, there is
a vertex z ¢ X UY adjacent to all x € X and non-adjacent to all y € Y.

Well-known fact

If G and H have k-extension property, then no FO sentence ¢ with
W(¢) < k distinguish between between G and H.
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WI[F] > x(F): the proof

Let k = x(F) — 1. It is sufficient to construct graphs G, H such that
G:IF,HﬂF (de’:Ek, H):Ek

Claim
For every s and F, a.a.s. G(n,1/2) 3 F, G(n,1/2) = E;.

We have to show that there is a graph H such that H 2 F, H = Ej.

Claim
Let K, «1 be the complete k-partite graph with each part consisting of
n vertices. A.a.s. H := G(K,xk,1/2) = Ey.

X(H) < x(Knxk) =k < x(F). So, HAF. T
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