First order complexity of subgraph isomorphism

Maksim Zhukovskii Moscow Institute of Physics and Technology

joint work with Oleg Verbitsky

Omsk Branch of Mathematical Center in Akademgorodok July 2, 2020

First-order language

► FO sentences are built of relational symbols ~, =; logical connectives ¬, ⇒, ⇔, ∨, ∧; variables x, y, x₁, ...; quantifiers ∀, ∃.

First-order language

► FO sentences are built of relational symbols ~, =; logical connectives ¬, ⇒, ⇔, ∨, ∧; variables x, y, x₁, ...; quantifiers ∀, ∃.

• $G \models \phi$ — the sentence ϕ is true for the graph G (or G models ϕ).

First-order language

- ► FO sentences are built of relational symbols ~,=; logical connectives ¬, ⇒, ⇔, ∨, ∧; variables x, y, x₁,...; quantifiers ∀, ∃.
- $G \models \phi$ the sentence ϕ is true for the graph G (or G models ϕ).
- ▶ FO property \mathcal{C} is define by a FO formula ϕ : $G \in \mathcal{C} \Leftrightarrow G \models \phi$.

Quantifier depth

 $\label{eq:Quantifier depth D} Quantifier \ depth \ D(\phi) \ -\!\!\!-\!\!\!$ length of the longest path of nested quantifiers of ϕ

Quantifier depth

$Quantifier \ depth \ D(\phi) \ --$ length of the longest path of nested quantifiers of ϕ

 $\label{eq:Variable} \begin{array}{l} Variable \ width \ W(\phi) \ - \\ \text{number of different variables of } \phi \end{array}$

$$\phi = \exists x (\exists y [x \sim y] \land$$
$$[\exists z ([x \neq z] \land [x \nsim z] \land [y \sim z] \land [\exists x (x \sim z) \land (x \neq y)])])$$
$$D(\phi) = 4, \quad W(\phi) = 3$$

x

 $\label{eq:Variable} \begin{array}{l} Variable \ width \ W(\phi) \ - \\ \text{number of different variables of } \phi \end{array}$

$$\phi = \exists x (\exists y [x \sim y] \land$$
$$[\exists z ([x \neq z] \land [x \nsim z] \land [y \sim z] \land [\exists x (x \sim z) \land (x \neq y)])])$$
$$D(\phi) = 4, \quad W(\phi) = 3$$

Variable width $W(\phi)$ number of different variables of ϕ

$$\phi = \exists x \left(\exists y \left[x \sim y \right] \land \right]$$
$$\exists z \left(\left[x \neq z \right] \land \left[x \approx z \right] \land \left[y \sim z \right] \land \left[\exists x \left(x \sim z \right) \land \left(x \neq y \right) \right] \right) \right] \right)$$

$$D(\phi) = 4, \quad W(\phi) = 3$$

Variable width $W(\phi)$ number of different variables of ϕ

$$\phi = \exists x (\exists y [x \sim y] \land [\exists z ([x \neq z] \land [x \nsim z] \land [y \sim z] \land [\exists x (x \sim z) \land (x \neq y)])])$$

$$D(\phi) = 4, \quad W(\phi) = 3$$

Variable width $W(\phi)$ number of different variables of ϕ

$$\phi = \exists x (\exists y [x \sim y] \land [\exists z ([x \neq z] \land [x \nsim z] \land [y \sim z] \land [\exists x (x \sim z) \land (x \neq y)])])$$

$$D(\phi) = 4, \quad W(\phi) = 3$$

 $\label{eq:Variable} \begin{array}{l} Variable \ width \ W(\phi) \ - \\ \text{number of different variables of } \phi \end{array}$

$$\phi = \exists x (\exists y [x \sim y] \land$$
$$[\exists z ([x \neq z] \land [x \nsim z] \land [y \sim z] \land [\exists x (x \sim z) \land (x \neq y)])])$$
$$D(\phi) = 4, \quad W(\phi) = 3$$

Some examples

• property of a graph to be complete

$$\forall x \,\forall y \ (\neg(x=y) \Rightarrow (x \sim y)).$$
$$D = W = 2.$$

Some examples

• property of a graph to be complete

$$\forall x \, \forall y \ (\neg(x=y) \Rightarrow (x \sim y)).$$

$$D = W = 2.$$

• property of a graph to contain a triangle

$$\exists x \, \exists y \, \exists z \ ((x \sim y) \land (y \sim z) \land (x \sim z)).$$
$$D = W = 3.$$

Some examples

• property of a graph to be complete

$$\forall x \, \forall y \ (\neg(x=y) \Rightarrow (x \sim y)).$$

$$D = W = 2.$$

• property of a graph to contain a triangle

$$\exists x \, \exists y \, \exists z \ ((x \sim y) \land (y \sim z) \land (x \sim z)).$$

$$D = W = 3.$$

- property of a graph to have chromatic number k;
- property of a graph to be complete;
- property of a graph to have even number of vertices.

Subgraph Isomorphism

For a FO property S, let

- ▶ D(S) minimal quantifier depth of a FO sentence defining S,
- W(S) minimal variable width of a FO sentence defining S.

Remark: $W(S) \leq D(S)$.

Subgraph Isomorphism

For a FO property S, let

- ▶ D(S) minimal quantifier depth of a FO sentence defining S,
- W(S) minimal variable width of a FO sentence defining S. Remark: W(S) < D(S).
- F fixed graph on ℓ vertices.

 $\mathcal{S}(F)$ — set of **all** graphs containing an isomorphic copy of F. **Problem:** find $D(F) = D(\mathcal{S}(F))$ and $W(F) := W(\mathcal{S}(F))$. Trivial upper bound: $W(F) \leq D(F) \leq \ell$.

Subgraph Isomorphism

For a FO property S, let

- ▶ D(S) minimal quantifier depth of a FO sentence defining S,
- ► W(S) minimal variable width of a FO sentence defining S. Remark: $W(S) \le D(S)$.
- F fixed graph on ℓ vertices.

 $\mathcal{S}(F)$ — set of **all** graphs containing an isomorphic copy of F. **Problem:** find $D(F) = D(\mathcal{S}(F))$ and $W(F) := W(\mathcal{S}(F))$. Trivial upper bound: $W(F) \leq D(F) \leq \ell$.

Observation

No FO sent. ϕ with $W(\phi) < \ell$ distinguish between K_{ℓ} and $K_{\ell-1}$. Therefore, $D(F) = W(F) = \ell$.

Induced Subgraph Isomorphism

S[F] — set of **all** graphs containing an **induced** isomorphic copy of F. **Problem:** find D[F] := D(S[F]) and W[F] = W(S[F]). Trivial upper bound: $W[F] \le D[F] \le \ell$.

Is it true that $W[F] = D[F] = \ell$ for every F?

Induced Subgraph Isomorphism

S[F] — set of **all** graphs containing an **induced** isomorphic copy of F. **Problem:** find D[F] := D(S[F]) and W[F] = W(S[F]). Trivial upper bound: $W[F] \le D[F] \le \ell$.

Is it true that $W[F] = D[F] = \ell$ for every F? No!

Induced Subgraph Isomorphism

S[F] — set of **all** graphs containing an **induced** isomorphic copy of F. **Problem:** find D[F] := D(S[F]) and W[F] = W(S[F]). Trivial upper bound: $W[F] \le D[F] \le \ell$. Is it true that $W[F] = D[F] = \ell$ for every F? No!

Let
$$F = K_3 + e \text{ (paw)}.$$

Olariu, 1988

A graph G is paw-free if and only if each connected component of H is triangle-free or complete multipartite.

 $D[F] \leq 3$, because the following sentence defines S[F]:

$$\exists x_1 ([\exists x_2 \exists x_3 ([x_1 \sim x_2] \land [x_1 \sim x_3] \land [x_2 \sim x_3])] \land [\exists x_2 ([x_1 \nsim x_2] \land [\exists x_3 ([x_1 \sim x_3] \land [x_2 \sim x_3])] \land [\exists x_3 ([x_3 \sim x_1] \land [x_3 \nsim x_2])])]$$

▶ SI and ISI problems for a pattern graph on ℓ vertices are solvable in time $O(n^{\ell})$ on *n*-vertex input graphs by **exhaustive search**.

- ▶ SI and ISI problems for a pattern graph on ℓ vertices are solvable in time $O(n^{\ell})$ on *n*-vertex input graphs by **exhaustive search**.
- ▶ Nešetřil and Poljak, 1985: both S(F) and S[F] can be recognized in time $O(n^{(\omega/3)\ell+2})$, where $\omega < 2.373$.

- ▶ SI and ISI problems for a pattern graph on ℓ vertices are solvable in time $O(n^{\ell})$ on *n*-vertex input graphs by **exhaustive search**.
- ▶ Nešetřil and Poljak, 1985: both S(F) and S[F] can be recognized in time $O(n^{(\omega/3)\ell+2})$, where $\omega < 2.373$.
- ► Alon, Yuster and Zwick 1995: S(F) can be recognized in time $2^{O(\ell)} \cdot n^{tw(F)+1} \log n$.

- ▶ SI and ISI problems for a pattern graph on ℓ vertices are solvable in time $O(n^{\ell})$ on *n*-vertex input graphs by **exhaustive search**.
- ▶ Nešetřil and Poljak, 1985: both S(F) and S[F] can be recognized in time $O(n^{(\omega/3)\ell+2})$, where $\omega < 2.373$.
- ► Alon, Yuster and Zwick 1995: S(F) can be recognized in time $2^{O(\ell)} \cdot n^{tw(F)+1} \log n$.
- ▶ Chen, Huang, Kanj, and Xia, 2006: SI problem for K_{ℓ} is unsolvable in time $n^{o(\ell)}$ unless the Exponential Time Hypothesis fails.

- ▶ SI and ISI problems for a pattern graph on ℓ vertices are solvable in time $O(n^{\ell})$ on *n*-vertex input graphs by **exhaustive search**.
- ▶ Nešetřil and Poljak, 1985: both S(F) and S[F] can be recognized in time $O(n^{(\omega/3)\ell+2})$, where $\omega < 2.373$.
- ► Alon, Yuster and Zwick 1995: S(F) can be recognized in time $2^{O(\ell)} \cdot n^{tw(F)+1} \log n$.
- ▶ Chen, Huang, Kanj, and Xia, 2006: SI problem for K_{ℓ} is unsolvable in time $n^{o(\ell)}$ unless the Exponential Time Hypothesis fails.
- Courcelle, 1990: every graph property definable by a sentence in monadic second-order logic can be efficiently decided on graphs of bounded treewidth.

In particular, for Subgraph Isomorphism, Courcelle's theorem implies time bound $f(\ell, tw) \cdot n$ for any class of input graphs having treewidth at most tw.

For SI, we consider three classes of input-graphs:

For SI, we consider three classes of input-graphs:

• sufficiently large connected graphs,

For SI, we consider three classes of input-graphs:

- sufficiently large connected graphs,
- graphs with sufficiently large treewidth,

For SI, we consider three classes of input-graphs:

- sufficiently large connected graphs,
- graphs with sufficiently large treewidth,
- graphs with sufficiently large connectivity.

For SI, we consider three classes of input-graphs:

- sufficiently large connected graphs,
- graphs with sufficiently large treewidth,
- graphs with sufficiently large connectivity.

connectivity

Let G be a graph with at least k + 1 vertices. G is k-connected if it is connected, and remains connected after removal of any k - 1 vertices. The connectivity $\kappa(G)$ is equal to the maximum k such that G is k-connected.

Treewidth

A tree decomposition of a graph G = (V, E) is a tree T with vertices X_1, \ldots, X_n such that

- $X_i \subset V$ for all i, and $X_1 \cup \ldots \cup X_n = V$;
- if $v \in X_i \cap X_j$, then all nodes X_k in the unique path path between X_i and X_j contain v;
- for every edge $v \sim w$ in E, there is i such that $v, w \in X_i$.

The width of T equals $\max_i |X_i| - 1$. The treewidth tw(G) is the minimum width among all possible tree decompositions of G.

Relaxations for SI

Let π be a graph parameter.

- $D^k_{\pi}(F)$ minimum quantifier depth of a FO sentence defining S(F) over connected graphs G with $\pi(G) \ge k$. For every k, $D^k_{\pi}(F) \ge D^{k+1}_{\pi}(F)$. Denote $D_{\pi}(F) = \min_k D^k_{\pi}(F)$ — minimum quantifier depth of a FO sentence defining S(F) over connected graphs with sufficiently large values of π .
- In the same way, $W_{\pi}(F)$ is the minimum variable width of a FO sentence defining S(F) over connected graphs with sufficiently large values of π .

Relaxations for SI

Let π be a graph parameter.

- ► $D_{\pi}^{k}(F)$ minimum quantifier depth of a FO sentence defining S(F) over connected graphs G with $\pi(G) \ge k$. For every k, $D_{\pi}^{k}(F) \ge D_{\pi}^{k+1}(F)$. Denote $D_{\pi}(F) = \min_{k} D_{\pi}^{k}(F)$ — minimum quantifier depth of a FO sentence defining S(F) over connected graphs with sufficiently large values of π .
- In the same way, $W_{\pi}(F)$ is the minimum variable width of a FO sentence defining S(F) over connected graphs with sufficiently large values of π .

Inequalities $\kappa(G) \le tw(G) < v(G)$ imply

 $D_v(F) \ge D_{tw}(F) \ge D_{\kappa}(F);$

 $W_v(F) \ge W_{tw}(F) \ge W_\kappa(F).$

Subgraph Isomorphism for connected input-graphs of large size: general results

Theorem

 $D_v(F) \leq \frac{2}{3}\ell + 1$ for infinitely many connected F. $W_v(F) > \frac{2}{3}\ell - 2$ for every connected F. Subgraph Isomorphism for connected input-graphs of large size: general results

Theorem

 $D_v(F) \leq \frac{2}{3}\ell + 1$ for infinitely many connected F. $W_v(F) > \frac{2}{3}\ell - 2$ for every connected F.

Theorem

$$D_v(S_{q,p}) \le \max\{p, \frac{1}{2}p + q - 2 - \frac{1}{2}p \mod 2\} + 2.$$

 $W_v(S_{q,p} \ge \max\{p, \frac{1}{2}p + q - 2 - \frac{1}{2}p \mod 2\}.$
Let v be a vertex of a connected graph F.

By a *v*-branch of F we mean a subgraph of F induced by the vertex set of a connected component of $F \setminus v$ in union with the vertex v itself.

Let v be a vertex of a connected graph F.

By a *v*-branch of F we mean a subgraph of F induced by the vertex set of a connected component of $F \setminus v$ in union with the vertex v itself.

Let S be a v-branch of F.

• If $S = P_{t+1}$ and deg $v \neq 2$, then S is a pendant path.

p(F) — maximum t such that F has a pendant P_{t+1} .

Let v be a vertex of a connected graph F.

By a *v*-branch of F we mean a subgraph of F induced by the vertex set of a connected component of $F \setminus v$ in union with the vertex v itself.

Let S be a v-branch of F.

• If $S = P_{t+1}$ and deg $v \neq 2$, then S is a pendant path.

p(F) — maximum t such that F has a pendant P_{t+1} .

• If $S = K_{1,s+1}$ with central vertex adjacent to v and degv > 1, then S is a pendant star.

s(F) — maximum s, such that F has a pendant $K_{1,s}$.

Let v be a vertex of a connected graph F.

By a *v*-branch of F we mean a subgraph of F induced by the vertex set of a connected component of $F \setminus v$ in union with the vertex v itself.

Let S be a v-branch of F.

• If $S = P_{t+1}$ and deg $v \neq 2$, then S is a pendant path.

p(F) — maximum t such that F has a pendant P_{t+1} .

• If $S = K_{1,s+1}$ with central vertex adjacent to v and degv > 1, then S is a pendant star.

s(F) — maximum s, such that F has a pendant $K_{1,s}$.

• If $S = S_{q,p}$, v is the end vertex of the tail part of S, $\deg v \neq 2$, then S is a pendant sparkler subgraph.

sp(F) — maximum p such that F has a pendant $S_{q,p}, q \ge 3$.

Let v be a vertex of a connected graph F.

By a *v*-branch of F we mean a subgraph of F induced by the vertex set of a connected component of $F \setminus v$ in union with the vertex v itself.

Let S be a v-branch of F.

• If $S = P_{t+1}$ and deg $v \neq 2$, then S is a pendant path.

p(F) — maximum t such that F has a pendant P_{t+1} .

• If $S = K_{1,s+1}$ with central vertex adjacent to v and degv > 1, then S is a pendant star.

s(F) — maximum s, such that F has a pendant $K_{1,s}$.

• If $S = S_{q,p}$, v is the end vertex of the tail part of S, $\deg v \neq 2$, then S is a pendant sparkler subgraph.

sp(F) — maximum p such that F has a pendant $S_{q,p}, q \ge 3$.

Theorem

$$W_v(F) \ge \ell - 1 - \min\{s(F), p(F), sp(F) - 2\}.$$

•
$$D_v(P_\ell) = \ell - 1, W_v(P_\ell) = \ell - 2.$$

•
$$D_v(P_\ell) = \ell - 1, W_v(P_\ell) = \ell - 2.$$

• For every $\ell \geq 4$,

$$D_v(K_{1,\ell-1}) = \ell, \quad W_v(K_{1,\ell-1}) = \ell - 1.$$

•
$$D_v(P_\ell) = \ell - 1, W_v(P_\ell) = \ell - 2.$$

• For every $\ell \geq 4$,

$$D_v(K_{1,\ell-1}) = \ell, \quad W_v(K_{1,\ell-1}) = \ell - 1.$$

• If
$$\delta(F) \ge 2$$
, then $D_v(F) = W_v(F) = \ell$.

•
$$D_v(P_\ell) = \ell - 1, W_v(P_\ell) = \ell - 2.$$

• For every $\ell \geq 4$,

$$D_v(K_{1,\ell-1}) = \ell, \quad W_v(K_{1,\ell-1}) = \ell - 1.$$

• If
$$\delta(F) \ge 2$$
, then $D_v(F) = W_v(F) = \ell$.
In particular, for every $\ell \ge 3$,
 $D_v(C_\ell) = W_v(C_\ell) = D_v(K_\ell) = W_v(K_\ell) = \ell$.

Subgraph Isomorphism for input-graphs width large treewidth or connectivity: general results

Theorem

If F is connected, then $W_{tw}(F) \ge tw(F) + 1$ unless F is contained in some 3-megastar $M_{3,b}$.

Subgraph Isomorphism for input-graphs width large treewidth or connectivity: general results

Theorem

If F is connected, then $W_{tw}(F) \ge tw(F) + 1$ unless F is contained in some 3-megastar $M_{3,b}$.

Theorem If e(F) > v(F), then

$$D_{\kappa}(F) \ge \frac{e(F)}{v(F)} + 2, \quad W_{\kappa}(F) \ge \frac{e(F)}{v(F)} + 1.$$

Subgraph Isomorphism for input-graphs with large treewidth or large connectivity: sequences

Theorem

For
$$a \ge 3$$
 $D_{tw}(L_{a,b}) = W_{tw}(L_{a,b}) = D_{\kappa}(L_{a,b}) = W_{\kappa}(L_{a,b}) = a.$
In particular, $D_{tw}(K_{\ell}) = W_{tw}(K_{\ell}) = D_{\kappa}(K_{\ell}) = W_{\kappa}(K_{\ell}) = \ell.$

Subgraph Isomorphism for input-graphs with large treewidth or large connectivity: sequences

Theorem

For
$$a \ge 3$$
 $D_{tw}(L_{a,b}) = W_{tw}(L_{a,b}) = D_{\kappa}(L_{a,b}) = W_{\kappa}(L_{a,b}) = a$.
In particular, $D_{tw}(K_{\ell}) = W_{tw}(K_{\ell}) = D_{\kappa}(K_{\ell}) = W_{\kappa}(K_{\ell}) = \ell$.

The minimal degree of a k-connected graph is at least k. Therefore, if F is a tree, then $D_{\kappa}(F) = W_{\kappa}(F) = 1$.

Subgraph Isomorphism: small graphs

F	$(\mathbf{W}_{\kappa},\mathbf{D}_{\kappa})$	$(\mathbf{W}_{tw},\mathbf{D}_{tw})$	$(\mathbf{W_v}, \mathbf{D_v})$
P_3	(1,1)	(1, 1)	(1, 1)
$ m K_3$	(3,3)	(3,3)	(3,3)
\mathbf{P}_4	(1,1)	(1, 1)	(2,3)
K _{1,3}	(1,1)	(1, 1)	(3, 4)
C_4	(4, 4)	(4, 4)	(4, 4)
$\mathbf{L}_{3,1}$	(3,3)	(3,3)	(3,3)
$\mathbf{K_4} \setminus \mathbf{e}$	(4, 4)	(4, 4)	(4, 4)
K ₄	(4, 4)	(4, 4)	(4, 4)

▶ B. Rossman, 2016: $W_{Arb}(F) \le tw(F) + 3$, $D_{Arb}(F) \le td(F) + 2$.

Tree-depth of G is the minimum height of a forest F with the property that every edge of G connects a pair of nodes that have an ancestor-descendant relationship to each other in F.

▶ B. Rossman, 2016: $W_{Arb}(F) \le tw(F) + 3$, $D_{Arb}(F) \le td(F) + 2$.

Tree-depth of G is the minimum height of a forest F with the property that every edge of G connects a pair of nodes that have an ancestor-descendant relationship to each other in F.

• B. Rossman, 2008: $W_{\text{Arb}}(K_{\ell}) > \frac{1}{4}\ell$.

Y. He, 2018 (?): $W_{Arb}(K_{\ell}) = \ell$.

► B. Rossman, 2016: $W_{Arb}(F) \le tw(F) + 3$, $D_{Arb}(F) \le td(F) + 2$.

Tree-depth of G is the minimum height of a forest F with the property that every edge of G connects a pair of nodes that have an ancestor-descendant relationship to each other in F.

► B. Rossman, 2008: $W_{\text{Arb}}(K_{\ell}) > \frac{1}{4}\ell$.

Y. He, 2018 (?): $W_{Arb}(K_{\ell}) = \ell$.

• O. Grigoryan, M. Makarov, MZ, 2020: For a tree F,

 $D_{\leq}(F) \le \frac{1}{2}\ell + \lceil \log_2(\ell+2) \rceil - 1, W_{\leq}(F) \le \frac{1}{2}\ell + 2.$

▶ B. Rossman, 2016: $W_{Arb}(F) \le tw(F) + 3$, $D_{Arb}(F) \le td(F) + 2$.

Tree-depth of G is the minimum height of a forest F with the property that every edge of G connects a pair of nodes that have an ancestor-descendant relationship to each other in F.

• O. Grigoryan, M. Makarov, MZ, 2020:
For a tree
$$F$$
,

$$D_{\leq}(F) \le \frac{1}{2}\ell + \lceil \log_2(\ell+2) \rceil - 1, W_{\leq}(F) \le \frac{1}{2}\ell + 2.$$

For F on 3 vertices,

if F is connected, then $D_{\leq}(F) = 3$; otherwise, $D_{\leq}(F) = 2$.

▶ B. Rossman, 2016: $W_{Arb}(F) \le tw(F) + 3$, $D_{Arb}(F) \le td(F) + 2$.

Tree-depth of G is the minimum height of a forest F with the property that every edge of G connects a pair of nodes that have an ancestor-descendant relationship to each other in F.

• O. Grigoryan, M. Makarov, MZ, 2020: For a tree F,

$$D_{\leq}(F) \leq \frac{1}{2}\ell + \lceil \log_2(\ell+2) \rceil - 1, W_{\leq}(F) \leq \frac{1}{2}\ell + 2.$$

For F on 3 vertices,

if F is connected, then $D_{\leq}(F) = 3$; otherwise, $D_{\leq}(F) = 2$. For F on 4 vertices, if $F \supset C_4$, then $D_{\leq}(F) = 4$; otherwise, $D_{\leq}(F) = 3$.

18 / 25

Induced Subgraph Isomorphism: general result

Theorem

For every graph F on $\ell \geq 2$ vertices,

$$W[F] \ge \max\left\{ \left\lceil \frac{1}{2}\ell - 2\log_2 \ell \right\rceil + 2, \chi(F), \frac{e(F)}{v(F)} + 1 \right\}.$$

Induced Subgraph Isomorphism: 3 and 4 vertices

 $D[F]=D[\overline{F}]\Rightarrow$ consider only connected patterns F

Induced Subgraph Isomorphism: 3 and 4 vertices

 $D[F] = D[\overline{F}] \Rightarrow$ consider only connected patterns F

Theorem

• For every F on $\ell = 3$ vertices, $D[F] = W[F] = \ell$.

Induced Subgraph Isomorphism: 3 and 4 vertices

 $D[F] = D[\overline{F}] \Rightarrow$ consider only connected patterns F

Theorem

- For every F on $\ell = 3$ vertices, $D[F] = W[F] = \ell$.
- ▶ $D[F] = W[F] = \ell$ for every F on $\ell = 4$ vertices unless $F = L_{3,1}$. $W[L_{3,1}] = D[L_{3,1}] = 3$.

Induced Subgraph Isomorphism: 5 vertices

Theorem (E. Kudryavtsev, M. Makarov, A. Shlychkova, MZ; 2019) For every F on $\ell = 5$ vertices, $D[F] \in \{\ell - 1, \ell\}$. Graphs with D[F] = 4:

Graphs with D[F] = 5:

 $K_{1,1,1,2}$

Remaining graphs:

Induced Subgraph Isomorphism: large graphs

Theorem (E. Kudryavtsev, M. Makarov, A. Shlychkova, MZ; 2019)

▶ If F or \overline{F} contains a connected component isomorphic to $L_{3,1}$, then $D[F] \leq \ell - 1$.

Induced Subgraph Isomorphism: large graphs

Theorem (E. Kudryavtsev, M. Makarov, A. Shlychkova, MZ; 2019)

- ▶ If F or \overline{F} contains a connected component isomorphic to $L_{3,1}$, then $D[F] \leq \ell 1$.
- ▶ If F is a disjoint union of $L_{3,1}$ (or $\overline{L_{3,1}}$) with isolated vertices, then $D[F] = \ell 1$.

Induced Subgraph Isomorphism: large graphs

Theorem (E. Kudryavtsev, M. Makarov, A. Shlychkova, MZ; 2019)

- ▶ If F or \overline{F} contains a connected component isomorphic to $L_{3,1}$, then $D[F] \leq \ell 1$.
- ▶ If F is a disjoint union of $L_{3,1}$ (or $\overline{L_{3,1}}$) with isolated vertices, then $D[F] = \ell 1$.
- If F is complete multipartite or a disjoint union of isomorphic complete multipartite graphs, then $W[F] = \ell$.

• How large are $D_{\leq}(P_{\ell})$ and $W_{\leq}(P_{\ell})$?

• How large are $D_{\leq}(P_{\ell})$ and $W_{\leq}(P_{\ell})$?

▶ The lower bound $W[F] \ge (\frac{1}{2} - o(1))v(F)$ does not even exclude the possibility that the time bound $O(n^{W[F]})$ for ISI can be better than $O(n^{(\omega/3)\ell+2})$ for infinitely many F.

• How large are $D_{\leq}(P_{\ell})$ and $W_{\leq}(P_{\ell})$?

▶ The lower bound $W[F] \ge (\frac{1}{2} - o(1))v(F)$ does not even exclude the possibility that the time bound $O(n^{W[F]})$ for ISI can be better than $O(n^{(\omega/3)\ell+2})$ for infinitely many F.

► The Nešetřil–Poljak algorithm solves S[F] for the graphs on 5 vertices in time O(n^{4.373}). For some of these graphs, this can be improved to O(n⁴) (Floderus et al., 2015) and even to O(n^{3.373}) in some cases (Williams et al., 2015). Is there F such that W[F] = 3?

• How large are $D_{\leq}(P_{\ell})$ and $W_{\leq}(P_{\ell})$?

▶ The lower bound $W[F] \ge (\frac{1}{2} - o(1))v(F)$ does not even exclude the possibility that the time bound $O(n^{W[F]})$ for ISI can be better than $O(n^{(\omega/3)\ell+2})$ for infinitely many F.

▶ The Nešetřil–Poljak algorithm solves S[F] for the graphs on 5 vertices in time $O(n^{4.373})$. For some of these graphs, this can be improved to $O(n^4)$ (Floderus et al., 2015) and even to $O(n^{3.373})$ in some cases (Williams et al., 2015). Is there F such that W[F] = 3?

• Is there F such that
$$D[F] \leq \ell - 2$$
?

• *k-th extension axiom* E_k — the sentence of quantifier depth k saying that, for every two disjoint sets $X, Y \subset V(G)$ with $|X \cup Y| < k$, there is a vertex $z \notin X \cup Y$ adjacent to all $x \in X$ and non-adjacent to all $y \in Y$.

Well-known fact

If G and H have k-extension property, then no FO sentence ϕ with $W(\phi) \leq k$ distinguish between between G and H.

• *k-th extension axiom* E_k — the sentence of quantifier depth k saying that, for every two disjoint sets $X, Y \subset V(G)$ with $|X \cup Y| < k$, there is a vertex $z \notin X \cup Y$ adjacent to all $x \in X$ and non-adjacent to all $y \in Y$.

Well-known fact

If G and H have k-extension property, then no FO sentence ϕ with $W(\phi) \leq k$ distinguish between between G and H.

Let $k = \chi(F) - 1$. It is sufficient to construct graphs G, H such that $G \supseteq F, H \not\supseteq F$ and $G \models E_k, H \models E_k$.

Let $k = \chi(F) - 1$. It is sufficient to construct graphs G, H such that $G \supseteq F, H \not\supseteq F$ and $G \models E_k, H \models E_k$.

Claim

For every s and F, a.a.s. $G(n, 1/2) \supseteq F$, $G(n, 1/2) \models E_s$.

Let $k = \chi(F) - 1$. It is sufficient to construct graphs G, H such that $G \supseteq F, H \not\supseteq F$ and $G \models E_k, H \models E_k$.

Claim

For every s and F, a.a.s. $G(n, 1/2) \supseteq F$, $G(n, 1/2) \models E_s$.

We have to show that there is a graph H such that $H \not\supseteq F$, $H \models E_k$.
$W[F] \ge \chi(F)$: the proof

Let $k = \chi(F) - 1$. It is sufficient to construct graphs G, H such that $G \supseteq F, H \not\supseteq F$ and $G \models E_k, H \models E_k$.

Claim

For every s and F, a.a.s. $G(n, 1/2) \supseteq F$, $G(n, 1/2) \models E_s$.

We have to show that there is a graph H such that $H \not\supseteq F$, $H \models E_k$. Claim

Let $K_{n \times k}$ be the complete k-partite graph with each part consisting of n vertices. A.a.s. $H := G(K_{n \times k}, 1/2) \models E_k$.

 $\chi(H) \leq \chi(K_{n \times k}) = k < \chi(F)$. So, $H \not\supseteq F$. \Box