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First-order language

I FO sentences are built of
relational symbols ⇠,=;
logical connectives ¬,),,,_,^;
variables x, y, x1, ...;
quantifiers 8, 9.

I G |= � — the sentence � is true for the graph G (or G models �).

I FO property C is define by a FO formula �:
G 2 C , G |= �.
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Quantifier depth

Quantifier depth D(�) —
length of the longest path of nested quantifiers of �
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Quantifier depth and variable width

Variable width W (�) —
number of di↵erent variables of �

� = 9x (9y [x ⇠ y]^
[9z ([x 6= z] ^ [x ⌧ z] ^ [y ⇠ z] ^ [9x (x ⇠ z) ^ (x 6= y)])])

D(�) = 4, W (�) = 3

Which property
does this sentence define?
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Quantifier depth and variable width

Variable width W (�) —
number of di↵erent variables of �

� = 9x (9y [x ⇠ y]^
[9z ([x 6= z] ^ [x ⌧ z] ^ [y ⇠ z] ^ [9x (x ⇠ z) ^ (x 6= y)])])

D(�) = 4, W (�) = 3

What about “containing P4”?
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Some examples

• property of a graph to be complete

8x 8y (¬(x = y) ) (x ⇠ y)).

D = W = 2.

• property of a graph to contain a triangle

9x 9y 9z ((x ⇠ y) ^ (y ⇠ z) ^ (x ⇠ z)).

D = W = 3.

• property of a graph to have chromatic number k;
• property of a graph to be complete;
• property of a graph to have even number of vertices.
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Subgraph Isomorphism

For a FO property S, let

I D(S) — minimal quantifier depth of a FO sentence defining S,

I W (S) — minimal variable width of a FO sentence defining S.

Remark: W (S)  D(S).

F — fixed graph on ` vertices.

S(F ) — set of all graphs containing an isomorphic copy of F .
Problem: find D(F ) = D(S(F )) and W (F ) := W (S(F )).
Trivial upper bound: W (F )  D(F )  `.

Observation
No FO sent. � with W (�) < ` distinguish between K` and K`�1.
Therefore, D(F ) = W (F ) = `.
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Induced Subgraph Isomorphism

S[F ] — set of all graphs containing an induced isomorphic copy of F .
Problem: find D[F ] := D(S[F ]) and W [F ] = W (S[F ]).
Trivial upper bound: W [F ]  D[F ]  `.

Is it true that W [F ] = D[F ] = ` for every F?

No!

Let F = K3 + e (paw).

Olariu, 1988

A graph G is paw-free if and only if each connected component of H is
triangle-free or complete multipartite.

D[F ]  3, because the following sentence defines S[F ]:

9x1([9x29x3([x1 ⇠ x2] ^ [x1 ⇠ x3] ^ [x2 ⇠ x3])]^
[9x2([x1 ⌧ x2] ^ [9x3([x1 ⇠ x3] ^ [x2 ⇠ x3])]^

[9x3([x3 ⇠ x1] ^ [x3 ⌧ x2])])]
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Algorithmic motivation

I SI and ISI problems for a pattern graph on ` vertices are solvable
in time O(n`) on n-vertex input graphs by exhaustive search.

I Nešetřil and Poljak, 1985: both S(F ) and S[F ] can be recognized
in time O(n(!/3)`+2), where ! < 2.373.

I Alon, Yuster and Zwick 1995: S(F ) can be recognized in time
2O(`) · ntw(F )+1 log n.

I Chen, Huang, Kanj, and Xia, 2006: SI problem for K` is
unsolvable in time no(`) unless the Exponential Time Hypothesis
fails.

I Courcelle, 1990: every graph property definable by a sentence in
monadic second-order logic can be e�ciently decided on graphs of
bounded treewidth.
In particular, for Subgraph Isomorphism, Courcelle’s theorem
implies time bound f(`, tw) · n for any class of input graphs having
treewidth at most tw.
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Graph parameters

For SI, we consider three classes of input-graphs:

• su�ciently large connected graphs,

• graphs with su�ciently large treewidth,

• graphs with su�ciently large connectivity.

connectivity

Let G be a graph with at least k + 1 vertices.
G is k-connected if it is connected, and remains connected after
removal of any k � 1 vertices.
The connectivity (G) is equal to the maximum k such that G is
k-connected.
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Treewidth
A tree decomposition of a graph G = (V,E) is a tree T with vertices
X1, . . . , Xn such that

I Xi ⇢ V for all i, and X1 [ . . . [Xn = V ;
I if v 2 Xi \Xj , then all nodes Xk in the unique path path between

Xi and Xj contain v;
I for every edge v ⇠ w in E, there is i such that v, w 2 Xi.

The width of T equals maxi |Xi|� 1. The treewidth tw(G) is the
minimum width among all possible tree decompositions of G.
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Relaxations for SI
Let ⇡ be a graph parameter.

I Dk
⇡(F ) — minimum quantifier depth of a FO sentence defining

S(F ) over connected graphs G with ⇡(G) � k. For every k,
Dk

⇡(F ) � Dk+1
⇡ (F ).

Denote D⇡(F ) = mink Dk
⇡(F ) — minimum quantifier depth of a

FO sentence defining S(F ) over connected graphs with su�ciently
large values of ⇡.

I In the same way, W⇡(F ) is the minimum variable width of a FO
sentence defining S(F ) over connected graphs with su�ciently large
values of ⇡.

Inequalities (G)  tw(G) < v(G) imply

Dv(F ) � Dtw (F ) � D(F );

Wv(F ) � Wtw (F ) � W(F ).
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Subgraph Isomorphism for connected input-graphs of
large size: general results

Theorem
Dv(F )  2

3`+ 1 for infinitely many connected F .
Wv(F ) > 2

3`� 2 for every connected F .

Theorem
Dv(Sq,p)  max{p, 12p+ q � 2� 1

2p mod 2}+ 2.
Wv(Sq,p � max{p, 12p+ q � 2� 1

2p mod 2}.
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The lower bound
Let v be a vertex of a connected graph F .
By a v-branch of F we mean a subgraph of F induced by the vertex set
of a connected component of F \ v in union with the vertex v itself.

Let S be a v-branch of F .

I If S = Pt+1 and degv 6= 2, then S is a pendant path.

p(F ) — maximum t such that F has a pendant Pt+1.

I If S = K1,s+1 with central vertex adjacent to v and degv > 1,
then S is a pendant star.

s(F ) — maximum s, such that F has a pendant K1,s.

I If S = Sq,p, v is the end vertex of the tail part of S, degv 6= 2,
then S is a pendant sparkler subgraph.

sp(F ) — maximum p such that F has a pendant Sq,p, q � 3.

Theorem
Wv(F ) � `� 1�min{s(F ), p(F ), sp(F )� 2}.
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Subgraph Isomorphism for connected input-graphs of
large size: sequences

I Dv(P`) = `� 1, Wv(P`) = `� 2.

I For every ` � 4,

Dv(K1,`�1) = `, Wv(K1,`�1) = `� 1.

I If �(F ) � 2, then Dv(F ) = Wv(F ) = `.

In particular, for every ` � 3,
Dv(C`) = Wv(C`) = Dv(K`) = Wv(K`) = `.
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Subgraph Isomorphism for input-graphs width large
treewidth or connectivity: general results

Theorem
If F is connected, then Wtw (F ) � tw(F ) + 1 unless F is contained in
some 3-megastar M3,b.

Theorem
If e(F ) > v(F ), then

D(F ) � e(F )

v(F )
+ 2, W(F ) � e(F )

v(F )
+ 1.
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Subgraph Isomorphism for input-graphs with large
treewidth or large connectivity: sequences

Theorem
For a � 3 Dtw (La,b) = Wtw (La,b) = D(La,b) = W(La,b) = a.
In particular, Dtw (K`) = Wtw (K`) = D(K`) = W(K`) = `.

The minimal degree of a k-connected graph is at least k. Therefore, if
F is a tree, then D(F ) = W(F ) = 1.
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Subgraph Isomorphism: small graphs

F (W,D) (Wtw ,Dtw ) (Wv,Dv)
P3 (1, 1) (1, 1) (1, 1)
K3 (3, 3) (3, 3) (3, 3)
P4 (1, 1) (1, 1) (2, 3)
K1,3 (1, 1) (1, 1) (3, 4)
C4 (4, 4) (4, 4) (4, 4)
L3,1 (3, 3) (3, 3) (3, 3)

K4 \ e (4, 4) (4, 4) (4, 4)
K4 (4, 4) (4, 4) (4, 4)
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Subgraph Isomorphism: arbitrary relations
I B. Rossman, 2016: WArb(F )  tw(F ) + 3, DArb(F )  td(F ) + 2.

Tree-depth of G is the minimum height of a forest F with the
property that every edge of G connects a pair of nodes that have
an ancestor-descendant relationship to each other in F .

I B. Rossman, 2008: WArb(K`) >
1
4`.

Y. He, 2018 (?): WArb(K`) = `.

I O. Grigoryan, M. Makarov, MZ, 2020:
For a tree F ,

D<(F )  1
2`+ dlog2(`+ 2)e � 1, W<(F )  1

2`+ 2.

For F on 3 vertices,

if F is connected, then D<(F ) = 3; otherwise, D<(F ) = 2.

For F on 4 vertices,

if F ◆ C4, then D<(F ) = 4; otherwise, D<(F ) = 3.
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Induced Subgraph Isomorphism: general result

Theorem
For every graph F on ` � 2 vertices,

W [F ] � max

⇢⇠
1

2
`� 2 log2 `

⇡
+ 2,�(F ),

e(F )

v(F )
+ 1

�
.
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Induced Subgraph Isomorphism: 3 and 4 vertices

D[F ] = D[F ] ) consider only connected patterns F

Theorem

I For every F on ` = 3 vertices, D[F ] = W [F ] = `.

I D[F ] = W [F ] = ` for every F on ` = 4 vertices unless F = L3,1.
W [L3,1] = D[L3,1] = 3.
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Induced Subgraph Isomorphism: 5 vertices

Theorem (E. Kudryavtsev, M. Makarov, A. Shlychkova, MZ; 2019)

For every F on ` = 5 vertices, D[F ] 2 {`� 1, `}.
Graphs with D[F ] = 4:

Graphs with D[F ] = 5:

Remaining graphs:
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Induced Subgraph Isomorphism: large graphs

Theorem (E. Kudryavtsev, M. Makarov, A. Shlychkova, MZ; 2019)

I If F or F contains a connected component isomorphic to L3,1,
then D[F ]  `� 1.

I If F is a disjoint union of L3,1 (or L3,1) with isolated vertices,
then D[F ] = `� 1.

I If F is complete multipartite or a disjoint union of isomorphic
complete multipartite graphs, then W [F ] = `.
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Questions

I How large are D<(P`) and W<(P`)?

I The lower bound W [F ] � (12 � o(1))v(F ) does not even exclude

the possibility that the time bound O(nW [F ]) for ISI can be better
than O(n(!/3)`+2) for infinitely many F .

I The Nešetřil–Poljak algorithm solves S[F ] for the graphs on 5
vertices in time O(n4.373). For some of these graphs, this can be
improved to O(n4) (Floderus et al., 2015) and even to O(n3.373) in
some cases (Williams et al., 2015). Is there F such that W [F ] = 3?

I Is there F such that D[F ]  `� 2?
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I The Nešetřil–Poljak algorithm solves S[F ] for the graphs on 5
vertices in time O(n4.373). For some of these graphs, this can be
improved to O(n4) (Floderus et al., 2015) and even to O(n3.373) in
some cases (Williams et al., 2015). Is there F such that W [F ] = 3?

I Is there F such that D[F ]  `� 2?

23 / 25



W [F ] � �(F ): the proof
• k-th extension axiom Ek — the sentence of quantifier depth k saying
that, for every two disjoint sets X,Y ⇢ V (G) with |X [ Y | < k, there is
a vertex z /2 X [Y adjacent to all x 2 X and non-adjacent to all y 2 Y .

Well-known fact
If G and H have k-extension property, then no FO sentence � with
W (�)  k distinguish between between G and H.
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W [F ] � �(F ): the proof

Let k = �(F )� 1. It is su�cient to construct graphs G,H such that
G A F , H 6A F and G |= Ek, H |= Ek.

Claim
For every s and F , a.a.s. G(n, 1/2) A F , G(n, 1/2) |= Es.

We have to show that there is a graph H such that H 6A F , H |= Ek.

Claim
Let Kn⇥k be the complete k-partite graph with each part consisting of
n vertices. A.a.s. H := G(Kn⇥k, 1/2) |= Ek.

�(H)  �(Kn⇥k) = k < �(F ). So, H 6A F . ⇤
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