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Plan:
– Parameterized complexity. Fixed parameter tractability.
– Word problem, word search problem in groups.
– Fixed parameter tractability of the word problem.
– Word search problem in Baumslag–Solitar group.
– Word search problem in Baumslag–Gersten group.
– Further developments.



Parameterized complexity

Downey, Fellows 1995: study complexity as a function of the size
of the input, n, and a parameter of input or output, k.

Example 1. Given a graph on n vertices, is there a dominating set
of size k?
(Set D ⊆ V s.t. every vertex is in D or has a neighbor in D.)

Can be solved in time O(n1+k).
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Parameterized complexity

Example 2. Given a graph on n vertices, is there a vertex cover of
size k?
(Set K ⊆ V s.t. every edge has a vertex in K .)

Can be solved in time O(1.2738k + kn).



Parameterized complexity

Vertex Cover, solvable in time O(1.2738k + kn).
Dominating Set, solvable in time O(n1+k).

Definition. A computational problem is fixed parameter tractable
if there is an algorithm that solves the problem on input of size n
with parameter k in time f (k)nc , where f : N→ N is computable
and c is a constant.
Class of such problems is denoted FPT.

Vertex Cover ∈ FPT.
Dominating Set 6∈ FPT (unless certain complexity hierarchy
collapses).
Both are NP-complete.
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Parameterized complexity

Parameterized complexity allows:
– Finer classification of hard problems.
– Distinction between laborious and complicated problems.
Example. List all binary words of length n.
This is not a polynomial time solvable problem. If the size of
answer k = 2n is taken as length of input, then the time is kn.
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Word problem

Word problem in a group G with presentation 〈X | R〉:

Given a group word w ∈ (X ∪ X−1)∗, decide if w = 1 in G .

Equivalently: decide if there are r1, . . . , rk ∈ R ∪ R−1 and
u1, . . . , uk ∈ (X ∪ X−1)∗ s.t.

w = (u−11 r1u1) · (u−12 r2u2) · · · (u−1k rkuk) =

= ru11 · r
u2
2 · · · r

uk
k

after free cancellation.



Word problem

Word problem in a group G with presentation 〈X | R〉:

Given a group word w ∈ (X ∪ X−1)∗, decide if w = 1 in G .

Equivalently: decide if there are r1, . . . , rk ∈ R ∪ R−1 and
u1, . . . , uk ∈ (X ∪ X−1)∗ s.t.

w = (u−11 r1u1) · (u−12 r2u2) · · · (u−1k rkuk) =

= ru11 · r
u2
2 · · · r

uk
k

after free cancellation.



Word problem

Example. Consider abelian group G = 〈a, b | a−1b−1ab〉.
Input: w = a−3b−1abab−2ab2. In G , w = 1.
Indeed,

a−3b−1abab−2ab2 = a−2(a−1b−1ab)a2·(a−1b−1ab)·b−1(a−1b−1ab)b.

Let’s make a picture!
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G = 〈a, b | a−1b−1ab〉.
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Word problem

Van Kampen diagrams (disc diagrams):

r1r2
r3r4

r1

r2

r3

r4

w

Homotopically: a disc.
Homeomorphically: a tree made of discs.



Word search problem

Word search problem (van Kampen diagram problem) in a group
G with presentation 〈X | R〉:

Given a group word w ∈ (X ∪ X−1)∗ s.t. w = 1 in G , find
r1, . . . , rk ∈ R ∪ R−1 and u1, . . . , uk ∈ (X ∪ X−1)∗ s.t.

w = ru11 · r
u2
2 · · · r

uk
k

after free cancellation.
Equivalently, find a van Kampen diagram for w .

Intuitive viewpoint: this is the problem of “finding proof” that
w = 1 in G .
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Word search problem

r1r2
r3r4

r1

r2

r3

r4

w

The minimal value k (area of the minimal van Kampen diagram)
can serve as a parameter of the word (search) problem.
Length of the RHS in

w = ru11 · r
u2
2 · · · r

uk
k

is bounded by C · (n + k)2.
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Dehn function

Dehn function of the presentation 〈X | R〉:

f (n) = max{k | w = 1, |w | ≤ n}.

Tells how large an area is required to show that w = 1 if |w | ≤ n.



Effect of parameterization

There are finite presentations where the word problem is:
– undecidable (Novikov 1955, Boone 1958),
– NP-complete (Sapir 2002).
Theorem 1. In every finite presentation the word problem can be
solved in time f (k)n2, where n is the size of input, k is the area of
a van Kampen diagram, and f depends on the presentation.
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Theorem 1. In every finite presentation the word problem can be
solved in time f (k)n2, where n is the size of input, k is the area of
a van Kampen diagram, and f depends on the presentation.
Proof. – Fix k . Van Kampen diagram is a tree of ≤ k
subdiagrams homeomorphic to a disc, of area ≤ k each.

– There are only finitely many, g(k), van Kampen diagrams of area
≤ k homeomorphic to a disc.
Algorithm: 1. Find a subword in w from the list of g(k) boundary
words of homeomorphic disc diagrams.
2. Remove the subword, perform free cancellation.
3. Repeat until whichever happens first: Step 1 fails, or the empty
word is reached, or area runs out. �
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a van Kampen diagram, and f depends on the presentation.

Remark. g(k), and therefore f (k), is exponential even for
〈a, b | a−1b−1ab〉.
Therefore, the word problem and word search problem are FPT.
For specific groups, we can do better.
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Baumslag–Solitar groups

Baumslag–Solitar group BS(m, n) = 〈a, b | (am)b = an〉.
If |m| 6= |n|, then Dehn function of BS(m, n) is exponential. For
example, in BS(1, 2) = 〈a, b | ab = a2〉 the equality

b−NabN · a = a · b−NabN , N = 1, 2, . . . .

requires O(2N) cells.



Baumslag–Solitar groups

The word search problem in BS(1, 2) = 〈a, b | ab = a2〉 requires
exponential time.
This contrasts the simplicity of the algorithm to solve the word
(search) problem.

BS(1, 2) can be viewed as an HNN-extension of 〈a〉 with a stable
letter b and associated subgroups 〈a〉, 〈a2〉.
The algorithm follows Britton’s lemma for HNN-extensions:
1. Look for a subword b−1anb, replace with a2n; or a subword
ba2nb−1, replace with an.
2. That’s it, there is no Step 2. Keep repeating Step 1.
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Baumslag–Solitar groups

Theorem 2. Parameterized complexity of the word search problem
in Baumslag–Solitar group BS(1, 2) is polynomial in n and k,
where n is the size of input and k is the area of a van Kampen
diagram.

Proof. Each replacement b−1anb → a2n or ba2nb−1 → an “peels
off” a piece of van Kampen diagram.

am

a2m
b b

Since area is k , this can happen ≤ k times.
If we count, we naively get time O((n + k)3). �



Baumslag–Solitar groups

Fine print: how do we know that we chew through the minimal
van Kampen diagram? Generally, the same word may have
different van Kampen diagrams.
If the same word has two substantially different van Kampen
diagrams, we can glue them in a sphere:

Good news: one-relator groups, in particular, BS(1, 2), are
asperical, that is, do not admit spherical diagrams. In other words,
van Kampen diagrams in BS(1, 2) are unique.
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The Baumslag–Gersten group

Baumslag–Gersten group (Baumslag 1969):

〈a, t | aat = a2〉.

Rewrite as
GB = 〈a, b, t | ab = a2, at = b〉,

an HNN-extension of BS(1, 2) = 〈a, b | ab = a2〉 with a stable
letter t and associated subgroups 〈a〉, 〈b〉.

Gersten 1992: GB has non-elementary Dehn function (in fact,
exp ◦ exp ◦ · · · ◦ exp︸ ︷︷ ︸

log n

1, Platonov 2004).

So the word search problem in this group is non-elementary.
However: word problem is polynomial (Myasnikov, Ushakov, Won
2011).



The Baumslag–Gersten group

Baumslag–Gersten group (Baumslag 1969):

〈a, t | aat = a2〉.

Rewrite as
GB = 〈a, b, t | ab = a2, at = b〉,

an HNN-extension of BS(1, 2) = 〈a, b | ab = a2〉 with a stable
letter t and associated subgroups 〈a〉, 〈b〉.

Gersten 1992: GB has non-elementary Dehn function (in fact,
exp ◦ exp ◦ · · · ◦ exp︸ ︷︷ ︸

log n

1, Platonov 2004).

So the word search problem in this group is non-elementary.
However: word problem is polynomial (Myasnikov, Ushakov, Won
2011).



The Baumslag–Gersten group

Theorem 3. Parameterized complexity of the word search problem
in the Baumslag–Gersten group GB is polynomial in n and k , where
n is the size of input and k is the area of a van Kampen diagram.

Proof. GB is aspherical and essentially the same algorithm works.

a2m

am
b b

t t
bm

– We still apply Britton lemma repeatedly, looking for subwords
t−1 . . . t or t . . . t−1.
– This time we have to find subwords that represent elements of
〈a〉 or 〈b〉 in BS(1, 2) (i.e., need to solve membership problem for
those subgroups).
– Still polynomial time. �
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Conclusion

– While the complexity of the word search problem in a finitely
presented group GB is immense, the parameterized complexity
shows that this complexity comes purely from the size of the
answer, and nothing else.
– These results rehabilitate the classical decision algorithm for the
word problem in HNN-extensions, which amounts to applying
Britton’s lemma repeatedly.
– The method may apply to arbitrary one-relator groups (unlike
the method of Myasnikov, Ushakov, Won used to show that the
word problem in GB is polynomial).
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Further developments and current work

– Word problem in one-relator groups. It appears that the same
approach works to show that the word in arbitrary one-relator
groups.
Magnus breakdown: reduce the (extended) word problem in 〈X | r〉
to the extended word problem in 〈X ′ | r ′〉, where |r ′| < |r |.
Extended word problem in 〈X | r〉 is the membership problem in
〈Y 〉, where Y ⊆ X .
– Word problem in HNN-extensions. It appears that the same
works for a wide class of HNN-extensions. If G = 〈X | R〉,
H,K ≤ G , and ϕ : H → K is an isomorphism, the corresponding
HNN-extension is

〈X , t | R, ht = ϕ(h), h ∈ H〉.

The main difficulty is to come up with the right kind of
assumptions on the membership problem in the underlying group.
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works for a wide class of HNN-extensions. If G = 〈X | R〉,
H,K ≤ G , and ϕ : H → K is an isomorphism, the corresponding
HNN-extension is

〈X , t | R, ht = ϕ(h), h ∈ H〉.

The main difficulty is to come up with the right kind of
assumptions on the membership problem in the underlying group.
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Conjugacy problem for a group G with presentation 〈X | R〉:
Given group words u, v in X , establish if there is g ∈ G s.t.
ug = v .

What to use as a parameter?
– Length of conjugating element.
– Area of annular diagram. In this case, a result similar to
Theorem 1 takes place.

Membership problem for a group G with presentation 〈X | R〉:
Given group words u1, . . . , un, u in X , establish if u ∈ 〈u1, . . . , un〉.
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